Transversal competences of technical graduates in the age of digitalisation
Main Article Content
Abstract
Digitized and interconnected systems, networks, data and cybersecurity, as well as the expansion of Industry 4.0 to more industries and the development of human-machine interaction in Industry 5.0, are creating new positions and requiring new competencies and expectations. To remain competitive, intelligent factories and production companies must adopt new technologies and relevant competency schemes for recruitment. The current research aims to identify the transversal competencies of technical career entrants based on the professional and practical challenges of Industry 4.0 and Industry 5.0 and to identify related education needs. This paper applies exploratory qualitative research based on in-depth interviews with 22 leading experts to identify the expected competencies of technical graduates, which can serve as indicators for defining the output competencies of technical higher education institutions. The research was based on grounded theory methodology. The expected competencies of employees were mapped on a competency map linked to the training areas and methods. The results of this research show that industrial needs in the field of transversal competencies are moving towards multidisciplinarity, with a complex approach increasingly expected from students. Closer links between industry and higher education and students could facilitate the development of transversal competencies in relation to current needs. This can be achieved through company visits, professional competitions, mentoring programs, and the use of methods that, in addition to integrating digital-virtual technologies into education, focus on developing social and emotional intelligence and enhancing the learning experience, such as project and design-based, and agile teaching methods, and personalized modules.
Downloads
Article Details
References
Androutsos, A., & Brinia, V. (2019). Developing and piloting a pedagogy for teaching innovation, collaboration, and co-creation in secondary education based on design thinking, digital transformation, and entrepreneurship. Education Sciences, 9(2), 113. 10.3390/educsci9020113
Andor László (2018). A digitalizáció és a munka világa. Mi várható a robotforradalom után? Magyar Tudomány, 179(1), 47–54. 10.1556/2065.179.2018.1.5
Baneres, D., & Conesa, J. (2017). A life-long learning recommender system to promote employability. International Journal of Emerging Technologies in Learning, 12(6), 77–93. 10.3991/ijet.v12i06.7166.
Balázs László & Szabó Csilla Marianna (2020). Examination of Employers' Expectations towards Career Entrants from Learning Outcomes Point of View. Journal of Applied Technical and Educational Sciences, 10(1), 3–18. 10.24368/jates.v10i1.158
Beke Éva (2022). A mérnök hallgatók foglalkoztathatósági kompetenciái az Ipar 4.0 tükrében. Óbudai Egytem, doktori értekezés.
Benesova, A. & Tupa J. (2017). Requirements for Education and Qualification of People in Indusrty 4.0, Procedia Manufacturing, 11, 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 27–30 June 2017, Modena, Italy, 2195–2220.
Blayone, T. J., Mykhailenko, O., vanOostveen, R., Grebeshkov, O., Hrebeshkova, O., & Vostryakov, O. (2018). Surveying digital competencies of university students and professors in Ukraine for fully online collaborative learning. Technology, Pedagogy and Education, 27(3), 279–296. 10.1080/1475939X.2017.1391871
Bonfield, C. A., Salter, M., Longmuir, A., Benson, M., & Adachi, C. (2020). Transformation or evolution?: Education 4.0, teaching and learning in the digital age. Higher Education Pedagogies, 5(1), 223–246. 10.1080/23752696.2020.1816847
Broo, D. G., Kaynak, O., & Sait, S. M. (2022). Rethinking engineering education at the age of Industry 5.0. Journal of Industrial Information Integration, 25, 100311. 10.1016/j.jii.2021.100311
Cavaco, S., Fougère, D. & Pouget, J. (2013). Estimating the effect of a retraining program on the re-employment rate of displaced workers. Empirical Economics, 44(1), 261–287. 10.1007/s00181-010-0391-6
Charmaz, K. (2008). Reconstructing grounded theory. Alasuutari, P., Bickman L. & Brannen J. (szerk.) The SAGE handbook of social research methods, Sage Publications, London, 461–478.
Christiansen, L., Hvidsten, T. E., Kristensen, J. H., Gebhardt, J., Mahmood, K., Otto, T., Lassen A. H., Brunoe, T. D., Schou, C., & Laursen, E. S. (2022). A Framework for Developing Educational Industry 4.0 Activities and Study Materials. Education Sciences, 12(10), 659. 10.3390/educsci12100659
de Prada Creo, E., Mareque, M., & Portela-Pino, I. (2021). The acquisition of teamwork skills in university students through extra-curricular activities. Education+ Training, 63(2), 165–181. 10.1108/ET-07-2020-0185
Elo, S., Kääriäinen, M., Kanste, O., Pölkki, T., Utriainen, K., & Kyngäs, H. (2014). Qualitative Content Analysis: A Focus on Trustworthiness, SAGE Open, 4(1), 10.1177/2158244014522633
Európai Bizottság (2012). Rethinking Education:Investing in skills for better socio-economic outcomes, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. https://eur-lex.europa.eu/legal-content/HU/TXT/PDF/?uri=CELEX: 52012DC
&from=EN Utolsó letöltés: 2023. 04. 03.
Erol, S., Jäger A., Hold, P., Ott, K. & Sihn, W. (2016). Tangible Industry 4.0: A scenario-based approach to learning for the future of production. Procedia CIRP, 54, 13-18. 10.1016/J.PROCIR.2016.03.162.
Eurpoean Council (2018). Accompanying the document proposal for a council recommendation on key competences for lifelong learning. Commission staff working document. file/// https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018SC0014&fro
m=EN Utolsó letöltés: 2023. 04. 03.
Falkinger, J. (2016). Wir müssen möglichst alle Menschen in den Prozess der Leistungserstellung integrieren. Perspektiven der Wirtschaftspolitik, 17(3), 253–263. 10.1515/pwp-2016-0017
Grossoehme, D. H. (2014). Overview of qualitative research. Journal of Health Care Chaplaincy, 20(3), 109–122. 10.1080/08854726.2014.925660
Gilli, K., Nippa, M., & Knappstein, M. (2023). Leadership competencies for digital transformation: An exploratory content analysis of job advertisements. German Journal of Human Resource Management, 37(1), 50–75. 10.1177/23970022221087252
Hartmann E. & Bovenschulte M. (2013). Skills Needs Analysis for Industry 4.0 based on roadmaps for smart systems, Skolovko Moscow School of Management & International Labour Organization (szerk.): Global Workshop Proceedings, 24–36.
Hecklau, F., Galeitzke, M., Flachs, S., & Kohl, H. (2016). Holistic approach for human resource management in Industry 4.0., Procedia CIRP, 54, 1–6. 6th CLF Conference on Learning Factories. 10.1016/j.procir.2016.05.102
Holik I. & Sanda I. D. (2019) A szociális készségfejlesztés lehetőségei mérnökhallgatók körében. In: Karlovitz J. T. (2019): Tanulmányok a tanügy és az oktatástan világából. Neveléstudományi Egyesület, Budapest, 23–29.
Horváth-Csikós Gabriella & Juhász, Tímea (2021). A puha (soft) és a kemény (hard) készségek munkaerőpiaci szükségessége. Educatio, 30(3), 532–542. 10.1556/2063.30.2021.3.13
Kálmán Anikó, & Kálmán Botond Géza (2022). Az ipar 4.0 kompetenciaigényeinek hatása az iskolarendszerű oktatásra. Iskolakultúra, 32(12), 57–73.
Kipper, L. M., Iepsen, S., Dal Forno, A. J., Frozza, R., Furstenau, L., Agnes, J., & Cossul, D. (2021). Scientific mapping to identify competencies required by industry 4.0. Technology in Society, 64, 101454. 10.1016/j.techsoc.2020.101454
Kispál-Vitai, Z. (2020). A digitalizáció módszertani kihívásai az üzleti képzésben: Digitalizáció az üzleti képzésben. Competitio, 19(1-2), 62–83. 10.21845/comp/2020/1–2/5
Kozák, Š., Ružický, E., Štefanovič J. & Schindler, F. (2018). Research and education for Industry 4.0: Present development. Proceedings of the 29th International Conference on Cybernetics and Informatics, Lazy pod Makytou, January, 1–8. 10.1109/CYBERI.2018.8337556
Lakatos, P. L., & Makó, C. (2021). A felsőoktatás minőségének néhány gazdasági vetülete. Competitio, 20(1-2), 14-30. 10.21845/comp/2021/1–2/2.
López, O. G. Gómez, G. S. & Duarte, S. R. (2018). Evaluation of Academic Competencies through Standardized Instruments: A Comparison of CompeUEM, LPA-Q, and ESCI-U. Higher Learning Research Communications, 8(1). 10.18870/hlrc.v8i1.395
Makó, Cs., Illéssy, M. & Borbély A. (2018). A digitalizáció és a munkavégzési formák, Magyar Tudomány, 179(1), 61–68. 10.1556/2065.179.2018.1.7
Mast, J., Rädle, S., Gerlach, J., & Bringmann, O. (2020). A computational intelligence based approach for optimized operation scheduling of energy plants. Automatisierungstechnik, 68(2), 118–129. 10.1515/auto-2019-0100
Moghaddam, A. (2006). Coding issues in grounded theory. Issues in Educational Research, 16(1), 52–66.
Orishev, J., & Burkhonov, R. (2021). Project for training professional skills for future teachers of technological education. Mental Enlightenment Scientific-Methodological Journal, 2021(2), 139–150. 10.51348/tziuj2021216
Pan, G., & Seow, P. S. (2016). Preparing accounting graduates for digital revolution: A critical review of information technology competencies and skills development. Journal of Education for Business, 91(3), 166–175. 10.1080/08832323.2016.1145622
Prada, E. D., Mareque, M., & Pino-Juste, M. (2022). Teamwork skills in higher education: is university training contributing to their mastery? Psicologia: Reflexão e Crítica, 35(5), 1–13 10.1186/s41155-022-00207-1
Prifti, L., Knigge, M., Kienegger, H., & Krcmar, H. (2017). A competency model for "Industrie 4.0" employees. In Leimeister, J.M.; Brenner, W. (szerk.): Proceedings der 13. Internationalen Tagung Wirtschaftsinformatik (WI 2017), St. Gallen, Svájc, 46–60
Salah, B.; Abidi, M.H.; Mian, S.H.; Krid, M.; Alkhalefah, H. & Abdo, A. (2019). Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0. Sustainability, 11(5), 1477. 10.3390/su11051477
Sántha, Kálmán (2008). Abduktív következtetés a kvalitatív pedagógiai kutatásban. Új Pedagógiai Szemle, 58, 8–9.
Sántha Kálmán & Tódor Erika Mária (2022). Szövegek a szövegben: Kvalitatív kutatásmódszertani szempontok az idézetek szerepéről. Iskolakultúra, 32(6), 72–82. 10.14232/ISKKULT.2022.6.72
Sipos Norbert, Kuráth Gabriella & Gyarmatiné Bányai Edit (2020). A frissdiplomások kompetenciái és a bérek kapcsolata. A kompetenciafejlesztés lehetőségei a felsőoktatásban. Közgázdásági Szemle, 67(11), 1130–1153. 10.18414/KSZ.2020.11.1130
Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. Denzin N. K. & Lincoln Y. S. (szerk.): Handbook of qualitative research, Sage Publications, 273–285.
Szalavetz, A. (2018). Ipari fejlődés és munka a tudásalapú társadalomban. Magyar Tudomány, 179(1), 55–60. 10.1556/2065.179.2018.1.6
Tóth Péter, & Pogátsnik Mónika (2021). A mérnökhallgatók induktív gondolkodása. Iskolakultúra, 31(10), 38–57. 10.14232/ISKKULT.2021.10.38
Tóthné Téglás Tünde (2016). Kompetencia vállalati, munkavállalói és felsőoktatási szemmel. In: Csiszárik-Kocsir Á. (szerk.) Vállalkozásfejlesztés a XXI. században VI., Óbudai Egyetem, 413–432.
Tóthné Téglás Tünde & Kelemen-Erdős Anikó (2020) Pályakezdőkkel szembeni kompetenciaelvárások és mérésük. Marketing & Menedzsment, 54(1), 43–54. 10.15170/MM.2020.54.01.04.
Tu, M. (2018). An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management: A mixed research approach. The International Journal of Logistics Management, 29(1), 131–151. 10.1108/IJLM-11-2016-0274
Varga Erika, Szira Zoltán, Boda Helga, Hajós (2017). A munkaerőpiacon elvárt kompetenciák relevanciájának összehasonlító elemzése a munkáltatók és a felsőoktatásban végzős fiatal munkavállalók aspektusából. Studia Mundi–Economica, 4(1), 82–93.
Wang, B., Tao, F., Fang, X., Liu, C., Liu, Y., & Freiheit, T. (2020). Smart Manufacturing and Intelligent Manufacturing: A Comparative Review, Engineering, 7(6), 738-757. 10.1016/j.eng.2020.07.017