Composting of distillery spent wash
Main Article Content
Abstract
Distillery spent wash, a by-product of the alcoholic beverage industry, is an organic waste whose management poses significant challenges due to its acidity, high organic load, notable content of polyphenols, macronutrients, micronutrients and heavy metals. In Europe, billions of liters of distillery waste are generated annually and its eco-unfriendly disposal can cause severe environmental and health impacts. Composting is a viable management strategy to treat and manage distillery slop promoting the recycling and stabilization of organic matter and nutrients in the material. The review examines different composting methods, such as single composting, co-composting and vermicomposting, along with their benefits and drawbacks. To optimize composting effectiveness, various materials, such as sewage sludge, vinasse, green and animal manure, inorganic amendments, bagasse, filter cake and municipal solid waste, among other agro-food and animal bio-wastes, can be used as a source of nitrogen and microorganisms. Also, the usage of different materials and mixtures aims to enhance the composting process increasing the degradation rate and the quality of the compost. The challenges of distillery spent wash composting are also covered in the paper which are mainly due to its characteristics, including high salt content, low carbon-to-nitrogen ratio, low pH and potential phytotoxicity. The paper concludes that composting distillery spent wash is an effective and sustainable waste management solution for recovering valuable nutrient resources and producing a stable nutrient-rich organic soil amendment. The produced compost can improve crop yields, nutrient absorption by plants and plant biomass and contribute to soil properties and restoration. The review provides insights into the current state of distillery spent wash composting and recommends future research directions to improve efficiency and expand potential applications.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
x
Funding data
-
Magyarország Kormánya
Grant numbers KEHOP-3.2.1-15-2021-00037
References
Alavi, N., Daneshpajou, M., Shirmardi, M., Goudarzi, G., Neisi, A., Babaei, A.A. 2017. Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Management, 69, 117–126. DOI: https://doi.org/10.1016/j.wasman.2017.07.039
Ali, N., Ayub, S., Ahmad, J. 2015a. A study on economic treatment of distillery effluent. International Journal of Current Research and Review 7(11), 8. DOI: https://doi.org/10.31782/2231-2196
Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M.M., Syed, J.H., Malik, R.N. 2015b. A review on vermicomposting of organic wastes. Environmental Progress & Sustainable Energy 34(4), 1050-1062. DOI: https://doi.org/10.1002/ep.12100
Anusha, K.N., Vagish M. 2022. Study of organic constituents in distillery spent wash and primary treated distillery effluent (PTDE) with different dilutions. International Journal for Research in Applied Science and Engineering Technology. 10. DOI: https://doi.org/10.22214/ijraset.2022.47067
Barthod, J., Rumpel, C., Dignac, M.F. 2018. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 38, 17.DOI: https://doi.org/10.1007/s13593-018-0491-9
Barthod, J., Rumpel, C., Paradelo, R., Dignac, M.F. 2016. The effects of worms, clay and biochar on CO2 emissions during production and soil application of co-composts. Soil 2, 673–683.DOI: https://doi.org/10.5194/soil-2-673-2016
Bertran, E., Sort, X., Soliva, M., Trillas, I. 2004. Composting winery waste: sludges and grape stalks. Bioresource technology 95(2), 203–208. DOI: https://doi.org/10.1016/ j.biortech.2003.07.012
Burg, P., Pavel, Z., Milan, M. 2014. Evaluating of selected parameters of composting process by composting of grape pomace. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 59, 75–80. DOI: https://doi.org/10.11118/ actaun201159060075
Bustamante, M.A., Moral, R., Paredes, C., Vargas-Garcı́a, M.C., Suárez-Estrella, F., Moreno, J. 2008a. Evolution of the pathogen content during co-composting of winery and distillery wastes. Bioresource Technology 99(15), 7299–7306. DOI: https://doi.org/10.1016/j.biortech.2007.12.051
Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., Pérez-Espinosa, A., Bernal, M.P. Moral, R. 2008b. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 72(4), 551–557. DOI: https://doi.org/10.1016/j.chemosphere.2008.03.030
Bustamante, M.A., Paredes, C., Moral, R., Agulló, E., Pérez-Murcia, M. D., Abad, M. 2008c. Composts from distillery wastes as peat substitutes for transplant production. Resources, Conservation and Recycling 52(5), 792–799. DOI: https://doi.org/10.1016/j.resconrec.2007.11.005
Bustamante, M.A., Paredes, C., Moral, R., Moreno-Caselles, J., Pérez-Murcia, M.D., Pérez-Espinosa, A., Bernal, M.P. 2007. Co-composting of distillery and winery wastes with sewage sludge. Water Science and Technology 56(2), 187–192. DOI: https://doi.org/10.2166/wst.2007.488
Bustamante, M.A., Paredes, C., Morales, J., Mayoral, A.M., Moral, R. 2009. Study of the composting process of winery and distillery wastes using multivariate techniques. Bioresource Technology 100(20), 4766–4772. DOI: https://doi.org/10.1016/j.biortech.2009.04.033
Bustamante, M.A., Said-Pullicino, D., Agulló, E., Andreu, J., Paredes, C., Moral, R. 2011. Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: effects on the characteristics of a calcareous sandy-loam soil. Agriculture, Ecosystems and Environment 140(1–2), 80–87. DOI: https://doi.org/10.1016/j.agee.2010.11.014
Chowdhary, P., Raj, A., Bharagava, R.N. 2018. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194, 229–246. DOI: https://doi.org/10.1016/j.chemosphere.2017.11.163
Christofoletti, C.A., Escher, J.P., Correia, J.E., Marinho, J.F.U., Fontanetti, C.S. 2013. Sugarcane vinasse: environmental implications of its use. Waste management 33(12), 2752–2761. DOI: https://doi.org/10.1016/j.wasman.2013.09.005
Damodharan, V., Padmapriya, J. 2022. Organic Fraction of Municipal Solid Waste Management with spent wash as inoculum and utilization of compost obtained. Advances in Bioresearch 13(2), 79–85. DOI: https://doi.org/10.15515/abr.0976-4585.13.2.7985
Dandeniya, W.S., Caucci, S. 2020. Composting in Sri Lanka: Policies, Practices, Challenges, and Emerging Concerns. In: Hettiarachchi, H., Caucci, S., Schwärzel, K. (eds): Organic Waste Composting through Nexus Thinking. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-36283-64
Devi, G.K., Vignesh, K., Chozhavendhan, S. 2020. Effective utilization of sugarcane trash for energy production. In: Refining biomass residues for sustainable energy and bioproducts (pp. 259–273). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-818996-2.00012-0
Dias, B.O., Silva, C.A., Higashikawa, F.S., Roig, A., Sánchez-Monedero, M.A. 2010. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresour Technol 101, 1239–1246. DOI: https://doi.org/10.1016/j.biortech.2009.09.024
Diaz, L.F., De Bertoldi, M., Bidlingmaier, W., Stentiford, E. 2007. Compost science and technology. Elsevier, Amsterdam/Boston, 364 p.
Diaz, M.J., Madejón E., López F., López R., Cabrera F. 2002. Optimization of the rate vinasse/grape marc for co-composting process. Process Biochemistry 37(10), 1143–1150. DOI: https://doi.org/10.1016/S0032-9592(01)00327-2
Dominguez, J., Edwards, C.A., Subler, S. 1997. A comparison of vermicomposting and composting. Biocycle 38, 57–59. Online available at https://jdguez.webs.uvigo.es/wp-content/uploads/2016/04/Comparison%20of%20vermicomposting%20and%20composting.pdf
Doublet, J., Francou, C., Poitrenaud, M., Houot, S. 2011. Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresource Technology 102(2), 1298–1307. DOI: https://doi.org/10.1016/ j.biortech.2010.08.065
Fernández, F.J., Sánchez-Arias, V., Villaseñor, J., Rodrı́guez, L. 2008. Evaluation of carbon degradation during co-composting of exhausted grape marc with different biowastes. Chemosphere 73 (5): 670–77. DOI: https://doi.org/10.1016/ j.chemosphere.2008.07.007
Finstein, M.S., Miller, F.C., MacGregor, S.T., Psarianos, K.M. 1992. The Rutgers strategy for composting: process design and control. Acta Hortic. 302, 75–86. DOI: https://doi.org/10.17660/ActaHortic.1992.302.7
Gebreeyessus, G.D., Mekonnen, A., Alemayehu, E. 2019. A review on progresses and performances in distillery stillage management. Journal of Cleaner Production 232, 295–307. DOI: https://doi.org/10.1016/j.jclepro.2019.05.383
George, P.A.O., Eras, J.J.C., Gutierrez, A.S., Hens, L., Vandecasteele, C. 2010. Residue from sugarcane juice filtration (filter cake): energy use at the sugar factory. Waste and Biomass Valorization 1, 407–413. DOI: https://doi.org/10.1007/ s12649-010-9046-2
Giagnoni, L., Martellini, T., Scodellini, R., Cincinelli, A., Renella, G. 2020. Co-composting: An Opportunity to Produce Compost with Designated Tailor-Made Properties. In: Hettiarachchi, H., Caucci, S., Schwärzel, K. (eds): Organic Waste Composting through Nexus Thinking. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-36283-6_9
Gill, S.S., Jana, A.M., Shrivastav, A. 2014. Aerobic bacterial degradation of kitchen waste: A review. Journal of Microbiology, Biotechnology and Food Sciences 3(6), 477–483.DOI: https://doi.org/10.15414/jmbfs.2014.3.6.477-483
Gomes, H.I., Mayes, W.M., Rogerson, M., Stewart, D.I., Burke, I.T. 2016. Alkaline residues and the environment: a review of impacts, management practices and opportunities. Journal Cleaner Production 112, 3571–3582. DOI: https://doi.org/10.1016/j.jclepro.2015.09.111
Gómez-Brandón, M, Lazcano, C., Lores, M., Domı́nguez, J. 2011. Short-term stabilization of grape marc through earthworms. Journal of Hazardous Materials 187(1–3), 291–295. DOI: https://doi.org/10.1016/j.jhazmat.2011.01.011
Gómez-Brandón, M., Lores, M., Domı́nguez, J. 2023. Recycling and valorization of distilled grape marc through vermicomposting: a pilot-scale study. Journal of Material Cycles and Waste Management 25(3), 1509–1518. DOI: https://doi.org/10.1007/s10163-023-01627-6
Hanc, A., Hrebeckova, T., Kuzel, S. 2019. Vermicomposting of distillery residues in a vertical-flow windrow system. Waste and Biomass Valorization 10(12), 3647–3657. DOI: https://doi.org/10.1007/s12649-019-00671-4
Haug, R.T. 1993. The practical handbook of compost engineering. Routledge. DOI: https://doi.org/10.1201/9780203736234
Iqbal, M.K., Shafiq, T., Ahmed, K. 2010. Characterization of bulking agents and its effects on physical properties of compost. Bioresource Technology 101(6), 1913–1919. DOI: https://doi.org/10.1016/j.biortech.2009.10.030
Jernigan, D.H. 2009. The global alcohol industry: an overview. Addiction 104, 6–12. DOI: https://doi.org/10.1111/j.1360-0443.2008.02430.x
Kamble, S.M., Dasar, G.V., Gundlur, S.S. 2017. Distillery spent wash production, treatment and utilization in agriculture - a review. Int. J. Pure App. Biosci. 5, 379–386. DOI: https://doi.org/10.18782/2320-7051.2840.
Karaca, A. 2004. Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 122(2–4), 297–303. DOI: https://doi.org/10.1016/ j.geoderma.2004.01.016
Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L. 2011. The anaerobic digestion of solid organic waste. Waste Management 31(8), 1737–1744. DOI: https://doi.org/10.1016/j.wasman.2011.03.021
Kharayat, Y. 2012. Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences 9(2), 69–91. DOI: https://doi.org/10.1080/1943815x.2012.688056
Kitts, D.D., Wu, C.H., Stich, H.F., Powrie, W.D. 1993. Effect of glucose-lysine Maillard reaction products on bacterial and mammalian cell mutagenesis. Journal of Agricultural and Food Chemistry 41(12), 2353–2358. DOI: https://doi.org/10.1021/jf00036a026
Kotroczó, Z., Fekete, I. 2020. Significance of soil respiration from biological activity in the degradation processes of different types of organic matter. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy 1(2), 171–179. DOI: https://doi.org/10.37281/DRCSF/1.2.10
Kumar, V., Chandra, R., Thakur, I.S., Saxena, G., Shah, M. P. 2020. Recent advances in physicochemical and biological treatment approaches for distillery wastewater. Combined application of physico-chemical and microbiological processes for industrial effluent treatment plant. pp. 79–118. DOI: https://doi.org/10.1007/978-981-15-0497-6_6
Machado, C.R., Hettiarachchi, H. 2020. Composting as a Municipal Solid Waste Management Strategy: Lessons Learned from Cajicá, Colombia. In: Hettiarachchi, H., Caucci, S., Schwärzel, K. (eds): Organic Waste Composting through Nexus Thinking. Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-36283-6_2
Madejón, E., Dı́az, M.J., López, R., Cabrera, F. 2001. Co-composting of sugarbeet vinasse: influence of the organic matter nature of the bulking agents used. Bioresource technology 76(3), 275–278. DOI: https://doi.org/10.1016/S0960-8524(00)00126-7
Malińska, K., Golanska, M., Caceres, R., Rorat, A., Weisser, P., Ślęzak, E. 2017. Biochar amendment for integrated composting and vermicomposting of sewage sludge—the effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour Technol 225, 206–214. DOI: https://doi.org/10.1016/j.biortech.2016.11.049
Marhuenda-Egea, F.C., Martı́nez-Sabater, E., Jordá, J., Sánchez-Sánchez, A., Moral, R., Bustamante, M.A., Paredes, C., Pérez-Murcia, M.D. 2007. Evaluation of the aerobic composting process of winery and distillery residues by thermal methods. Thermochimica Acta 454(2), 135–143. DOI: https://doi.org/10.1016/j.tca.2007.01.015
Maurya, P.M., Patil, S.V. 2018. A review on treatment of distillery wastewater by physicochemical approaches. International Journal of Research Studies in Science, Engineering and Technology 5(9), 36–44.
Melamane, X.L., Strong, P.J., Burgess, J.E. 2007. Treatment of wine distillery wastewater: a review with emphasis on anaerobic membrane reactors. South African Journal of Enology and Viticulture 28(1), 25–36. DOI: https://doi.org/10.21548/28-1-1456
Mohana, S., Acharya, B.K., Madamwar, D. 2009. Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials 163(1), 12–25. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.079
Nogales, R., Cifuentes, C., Benítez, E. 2005. Vermicomposting of winery wastes: a laboratory study. Journal of Environmental Science and Health Part B 40(4), 659–73. DOI: https://doi.org/10.1081/pfc-200061595
Pandey, R.A., Malhotra, S., Tankhiwale, A., Pande, S., Pathe, P.P., Kaul, S.N. 2003. Treatment of biologically treated distillery effluent - a case study. International Journal of Environmental Studies 60(3), 263–275. DOI: https://doi.org/10.1080/00207230290024270
Pant, D., Adholeya, A. 2006. Enhanced production of ligninolytic enzymes and decolorization of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation 18(5), 647–659. DOI: https://doi.org/ 10.1007/s10532-006-9097-z
Pant, D., Adholeya, A. 2007. Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology 98(12), 2321–2334. DOI: https://doi.org/10.1016/ j.biortech.2006.09.027
Paredes, C., Medina, E., Moral, R., Bustamante, M.A., Perez-Espinosa, A. 2007. Nitrogen dynamics in a clayey loam soil amended with distillery waste compost. 14th Ramiran International Conference: Treatment and Use of Non-Conventional Organic Residues in Agriculture. Onilne available at http://ramiran.uvlf.sk/ramiran2010/docs/Ramiran2010_0124_final.pdf
Patel, S., Jamaluddin, 2018. Treatment of distillery wastewater: a review. International Journal of Theoretical and Applied Sciences 10(1), 117–139.
Pinamonti, F.L., Stringari, G.I., Gasperi, F.L., Zorzi, G.I. 1997. The use of compost: its effects on heavy metal levels in soil and plants. Resources, Conservation and Recycling 21(2), 129–143. DOI: https://doi.org/10.1016/S0921-3449(97)00032-3
Pinamonti, F.L., Zorzi, G. 1996. Experiences of compost use in agriculture and in land reclamation projects. In: de Bertoldi, M., Sequi, P., Lemmes, B., Papi, T. (eds): The Science of Composting. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-009-1569-5_49
Pinter, I.F., Fernández, A.S., Martı́nez, L.E., Riera, N., Fernández, M., Aguado, G.D., Uliarte, E.M. 2019. Exhausted grape marc and organic residues composting with polyethylene cover: process and quality evaluation as plant substrate. Journal of Environmental Management 246, 695–705. DOI: https://doi.org/10.1016/j.jenvman.2019.06.027.
Polprasert, C. 2007. Organic Waste Recycling Technology and Management. International Water Association (IWA), London, Vol. 101, 833–835.
Ravikumar, R. 2007. Biodegradation and decolourization of biomethanated distillery spent wash. Indian Journal of Science and Technology 1(2), 1–6. DOI: https://doi.org/10.17485/ijst/2008/v1i2/2
Ray, S.G., Ghangrekar, M.M. 2019. Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways. International Journal of Environmental Science and Technology 16, 527–546. DOI: https://doi.org/10.1007/s13762-018-1786-8
Romero, E., Plaza, C., Senesi, N., Nogales, R., Polo, A. 2007. Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma 139(3–4), 397–406. DOI: https://doi.org/10.1016/j.geoderma.2007.03.009
Rynk, R., Schwarz, M., Richard, T.L., Cotton, M., Halbach, T., Siebert, S. 2022. Compost feedstocks. In: The Composting Handbook (pp. 103–157). Academic Press. DOI: https://doi.org/ 10.1016/B978-0-323-85602-7.00005-4
Sarangi, B.K., Mudliar, S.N., Bhatt, P., Kalve, S., Chakrabarti, T., Pandey, R.A. 2008. Compost from sugar mill press mud and distillery spent wash for sustainable agriculture. Dynamic Soil, Dynamic Plant 2(1), 35–49.
Satyawali, Y., Balakrishnan, M. 2008. Wastewater treatment in molasses-based alcohol distilleries for cod and color removal: a review. Journal of Environmental Management 86(3), 481–97. DOI: https://doi.org/10.1016/ j.jenvman.2006.12.024
Shinde, P.A., Ukarde, T.M., Pandey, P.H., Pawar, H.S. 2020. Distillery spent wash: an emerging chemical pool for next generation sustainable distilleries. Journal of Water Process Engineering 36, 101353. DOI: https://doi.org/10.1016/ j.jwpe.2020.101353
Silva, L.R.B., Kardos. L. 2022. Recycling of organic waste: an overview of Pálinka distillery mash composting. Journal of Central European Green Innovation 10(Suppl 1), 157–75. DOI: https://doi.org/10.33038/jcegi.3509
Singh, J., Kaur, A., Vig, A. P. 2014. Bioremediation of distillery sludge into soil-enriching material through vermicomposting with the help of eisenia fetida. Applied Biochemistry and Biotechnology 174(4), 1403–1419. DOI: https://doi.org/10.1007/s12010-014-1116-7
Stichlmair, J.G., Klein, H., Rehfeldt, S. 2021. Distillation: principles and practice. New York, John Wiley & Sons, 688 p. DOI: https://doi.org/10.1002/9781119414674
Suthar, S. 2007. Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia Fetida. The Environmentalist 28(2), 76–84. DOI: https://doi.org/10.1007/s10669-007-9031-x
Tejada, M., Garcı́a-Martı́nez, A.M., Parrado, J. 2009. Effects of a vermicompost composted with beet vinasse on soil properties, soil losses and soil restoration. CATENA 77(3), 238–247. DOI: https://doi.org/10.1016/j.catena.2009.01.004
Tejada, M., Gonzalez, J.L., Garcı́a-Martı́nez, A.M., Parrado, J. 2008. Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresource Technology 99(11), 4949–4957. DOI: https://doi.org/10.1016/j.biortech.2007.09.026
Tiwari, A., Khalid, M.A., Garg, M. 2019. Spent-wash utilization in bio-composting: a sustainable solution. International Journal of Research and Analytical Reviews (IJRAR) 6(2), 399-404. Online available at http://www.ijrar.org/IJRAR19K8305.pdf
Torres-Climent, A., Gomis, P., Martı́n-Mata, J., Bustamante, M.A., Marhuenda-Egea, F.C., Pérez-Murcia, M.D., Pérez-Espinosa, A., Paredes, C., Moral, R. 2015. Chemical, Thermal and Spectroscopic Methods to Assess Biodegradation of Winery-Distillery Wastes During Composting. Edited by Jorge Aburto. PLOS ONE 10(9), e0138925. DOI: https://doi.org/10.1371/ journal.pone.0138925
Villena, R., Castellanos, M.T., Cartagena, M.C., Ribas, F., Arce, A., Cabello, M.J., Requejo, M.I. 2018. Winery distillery waste compost effect on the performance of melon crop under field conditions. Scientia Agricola 75(6), 494–503. DOI: https://doi.org/10.1590/1678-992x-2016-0507.
Wagh, M.P., Nemade, P.D. 2018. Biogas generation from distillery spent wash by using an OPUR western biotechnology process: a case study. Desalination and water treatment 118, 241–248. DOI: https://doi.org/10.5004/dwt.2018.22404
Wang, J., Hu, Z., Xu, X., Jiang, X., Zheng, B., Liu, X., Pan, X., Kardol, P. 2014. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 34, 1546–1552. DOI: https://doi.org/10.1016/j.wasman.2014.04.010
Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Ismail, I.M.I., Rashid, M.I. 2017. Optimization of food waste compost with the use of biochar. J Environ Manag. 216, 70–81. DOI: https://doi.org/10.1016/j.jenvman.2017.06.015
Wedzicha, B.L., Kaputo, M.T. 1992. Melanoidins from glucose and glycine: composition, characteristics and reactivity towards sulphite ion. Food Chemistry 43(5), 359–367. DOI: https://doi.org/10.1016/0308-8146(92)90308-o.
Wongkoon, T., Boonlue, S., Riddech, N. 2017. Effect of compost made from filter cake and distillery slop on sugarcane growth. Asia-Pacific Journal of Science and Technology 19(Supplement issue), 250–255. Online available at https://so01.tci-thaijo.org/index.php/APST/article/view/83127
Yadav, S., Chandra, R. 2012. Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolourisation by a potential bacterial consortium. Biodegradation 23, 609–620. DOI: https://doi.org/10.1007/s10532-012-9537-x
Yu, H., Jiang, J., Zhao, Q., Wang, K., Zhang, Y., Zheng, Z. and Hao, X. 2015. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation. Bioresour. Technol. 193, 1–7. DOI: https://doi.org/10.1016/j.biortech. 2015.06.057
Zeng, J., Price, G.W., Arnold, P. 2012. Evaluation of an aerobic composting process for the management of Specified Risk Materials (SRM). J. Hazard Mater. 219, 260–266. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.003
Zhang, L., Sun, X. 2016. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresource Technology 218, 335–343. DOI: https://doi.org/10.1016/ j.biortech.2016.06.097