Future Projections of Water Scarcity in the Danube River Basin Due to Land Use, Water Demand and Climate Change
Main Article Content
Abstract
This paper presents a state-of-the-art integrated model assessment to estimate the impacts of the 2°C global mean temperature increase and the 2061-2090 warming period on water scarcity in the Danube River Basin under the RCP8.5 scenario. The Water Exploitation Index Plus (WEI+) is used to calculate changes in both spatial extent and people exposed to water scarcity due to land use, water demand, population and climate change. Despite model and data uncertainties, the combined effects of projected land use, water demand and climate change show a decrease in the number of people exposed to water scarcity during the 2°C warming period and an increase in the 2061-2090 period in the Danube River Basin. However, the projected population change results in a decrease of exposed people in both warming periods. Regions with population growth, in the northwestern part of the Danube River Basin experience low water scarcity or a decrease in water scarcity. The largest number of people vulnerable to water scarcity within the Danube River Basin are living in the Great Morava, Bulgarian Danube and Romanian Danube. There, the combined effects of land use, water demand and climate change exacerbate already existing water scarce areas during the 2°C warming period and towards the end of the century new water scarce areas are created. Although less critical during the 2°C warming period, adjacent regions such as the Tisza, Middle Danube and Siret-Prut are susceptible to experience similar exposure to water scarcity within the 2061-2090 period. Climate change is the most important driver for the increase in water scarcity in these regions, but the strengthening effect of water demand (energy sector) and dampening effect of land use change (urbanization) does play a role as well. Therefore, while preparing for times of increased pressures on the water supply it would be advisable for several economic sectors to explore and implement water efficiency measures.
Downloads
Article Details
x
References
Alcamo, J., Flörke, M., Märker, M. 2007. Future long-term changes in global water resources driven by socioeconomic and climatic changes. Hydrolog. Sci. J. 52, 247–275. DOI: 10.1623/hysj.52.2.247.10.1623/hysj.52.2.247
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F. 2013. GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci. 17, 1161–1175. DOI: 10.5194/hess-17-1161-2013.10.5194/hess-17-1161-2013
Alfieri, L., Burek, P., Feyen, L., Forzieri, G. 2015. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 19, 2247–2260. DOI: 10.5194/hessd-12-1119-2015.10.5194/hessd-12-1119-2015
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., et al. 2017. Global projections of river flood risk in a warmer world. Earths Future 5(2), 171–182. DOI: 10.1002/2016ef00048510.1002/2016ef000485
Arnell, N. W., van Vuuren, D. P., Isaac, M. 2011. The implications of climate policy for the impacts of climate change on global water resources. Glob. Environ. Change 21, 592–603. DOI: 10.1016/j.gloenvcha.2011.01.01510.1016/j.gloenvcha.2011.01.015
Arnell, N. W., et al. 2013. A global assessment of the effects of climate policy on the impacts of climate change. Nat. Clim. Change 3, 512–519. DOI: 10.1038/nclimate179310.1038/nclimate1793
Arnell, N. W., Lloyd-Hughes, B. 2014. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Clim. Change 122, 127–140. DOI: 10.1007/s10584-013-0948-410.1007/s10584-013-0948-4
Baranzelli, C., et al. 2014. The reference scenario in the LUISA platform – Updated configuration 2014 towards a common baseline scenario for EC impact assessment procedures. Report EUR 27019 EN, Luxembourg: Publications office of the EU.
Bartholy, J., Pongrácz, R., Pieczka, I. 2014. How the climate will change in this century? Hungarian Geographical Bulletin 63, 55–67. DOI: 10.15201/hungeobull.63.1.5
Batista e Silva, F., Gallego, J., Lavalle, C. 2013. A high-resolution population grid map for Europe, J. Maps 9, 16–28, DOI: 10.1080/17445647.2013.764830.10.1080/17445647.2013.764830
Beniston, M. 2004. The 2003 heatwave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31, 2022–2026. DOI: 10.1029/2003gl01885710.1029/2003gl018857
Bernhard, J., Reynaud, A., De Roo, A., Karssenberg, D., De Jong, S. 2018a. Household water use in Europe at regional scale: analysis of trends and quantification of main drivers, Under review.
Bernhard, J., Reynaud, A., De Roo, A., Karssenberg, D., De Jong, S. 2018b. Mapping industrial water use and water productivity levels in Europe at high sectoral and spatial detail, Under review.
Bisselink, B., Zambrano-Bigiarini, M., Burek, P., de Roo, A. 2016. Assessing the role of uncertain precipitation estimates on the robustness of hydrological model parameters under highly variable climate conditions. J. Hydrol. Reg. Stud. 8, 112–129, DOI: 10.1016/j.ejrh.2016.09.003.
Bisselink, B., Bernhard, J., Gelati, E., Adamovic, M., Jacobs, C., Mentaschi, L., Lavalle, C., De Roo, A. 2018. Impact of a changing climate, land use, and water usage on water resources in the Danube river basin, EUR 29228 EN, Publications Office of the European Union, Luxembourg, ISBN 978-92-79-85888-8, DOI: 10.2760/561327, JRC111817.
Burek, P., De Roo, A., van der Knijff, J. 2013. LISFLOOD – Distributed Water Balance and Flood Simulation Model - Revised User Manual. EUR 26162 10/2013; Publications Office of the European Union. Directorate-General Joint Research Centre, Institute for Environment and Sustainability, ISBN: 978-92-79-33190-9.
Büttner G, Kosztra B. 2007. CLC2006 Technical guidelines. Technical Report No. 17 / 2007. EEA. Available from http://www.eea.europa.eu/publications/technical_report_2007_17.
De Roo, A. P. J., Wesseling, C. G., Van Deursen, W.P.A. 2000. Physically-based river basin modelling within a GIS: The LISFLOOD model. Hydrological Processes 14, 1981–1992. DOI:10.1002/1099-1085(20000815/30)14:11/12<1981::AIDHY P49>3.0.CO;2-F10.1002/1099-1085(20000815/30)14:11/12<1981::AIDHYP49>3.0.CO;2-F
Dosio, A., Paruolo, P., Rojas, R. 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal, Journal of Geophysical Research D: Atmospheres 117(17). DOI: 10.1029/2012JD017968.10.1029/2012JD017968
Dottori, F., Kalas, M., Salamon, P., Bianchi, A., Alfieri, L., Feyen, L. 2017. An operational procedure for rapid flood risk assessment in Europe. Nat. Hazards Earth Syst. Sci. 17, 1111–1126. DOI:10.5194/nhess-17-1111-2017.10.5194/nhess-17-1111-2017
Emerton, R., Zsoter, E., Arnal, L., Cloke, H. L., Muraro, D., Prudhomme, C., Stephens, E. M., Salamon, P., Pappenberger, F.2018. Developing a global operational seasonal hydrometeorological forecasting system: GloFAS-Seasonal v1.0. Geosci. Model Dev. 11, 3327–3346. DOI: 10.5194/gmd-11-3327-2018.
Faergemann, H. 2012. Update on water scarcity and droughts indicator development (EEA – European Environmental Agency).
Farinosi, F., Giupponi, C., Reynaud, A., Ceccherini, G., CarmonaMoreno, C., De Roo, A., Gonzalez-Sanchez, D., Bidoglio, G. 2018. An innovative approach to the assessment of hydropolitical risk: A spatially explicit, data driven indicator of hydropolitical issues, Global Environmental Change, 52, 286–313. DOI: 10.1016/j.gloenvcha.2018.07.001.10.1016/j.gloenvcha.2018.07.001
Forzieri, G., Feyen, L., Rojas, R., et al. 2014. Ensemble projections of future streamflow droughts in Europe. Hydrol. Earth Syst. Sci. 18, 85–108. DOI: 10.5194/hess-18-85-2014.10.5194/hess-18-85-2014
Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., Migliavacca, M., Bianchi, A., Rojas, R., Cid, A. 2016. Multihazard assessment in Europe under climate change. Clim Change 137, 105–119. DOI: 10.1007/s10584-016-1661-x.10.1007/s10584-016-1661-x
Gosling, S. N., Arnell, N. W. 2013. A global assessment of the impact of climate change on water scarcity. Clim. Change 1–15. DOI: 10.1007/s10584-013-0853-x10.1007/s10584-013-0853-x
Haddeland, I., et al. 2014. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256. DOI: 10.1073/pnas.122247511010.1073/pnas.1222475110
Hanasaki, N., et al. 2013. A global water scarcity assessment under shared socio-economic pathways: 2. Water availability and scarcity. Hydrol. Earth Syst. Sci. 17, 2393–413. DOI: 10.5194/hess-17-2393-201310.5194/hess-17-2393-2013
Hlásny, T., Trombik, J., Dobor, L., Barcza, Z., Barka, I. 2016. Future climate of the Carpathians. Reg. Environ. Change 16, 1495–1506. DOI: 10.1007/s10113-015-0890-210.1007/s10113-015-0890-2
ICPDR, 2013. ICPDR Strategy on Adaptation to Climate Change. 42 p.
ICPDR, 2015. The Danube River Basin District Management Plan. Part A-Basin-wide Overview. Update 2015. 164 p.
ICPDR, 2018. Danube River Basin Climate Change Adaptation. Revision and Update of the Danube Study. 115 p.
Jacob, D., et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ.Change 14, 563–578. DOI:10.1007/s10113-013-0499-2.10.1007/s10113-013-0499-2
Jacobs-Crisioni, C., Diogo, V., Perpiña Castillo, C., Baranzelli, C., Batista e Silva, F., Rosina, K., Kavalov, B., Lavalle, C. 2017. TheLUISA Territorial Reference Scenario 2017: A technical description, Publications Office of the European Union, Luxembourg.
Karabulut, A., Egoh, B. N., Lanzanova, D., Grizzetti, B., Bidoglio, G., Pagliero, L., Bouraoui, F., Aloe, A., Reynaud, A., Meas, J., Vandecasteele, I., Mubarek, S. 2016. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube River Basin. Ecosyst. Serv. 17, 278–292. DOI: 10.1016/j.ecoser.2015.08.00210.1016/j.ecoser.2015.08.002
Kiguchi, M., Shen, Y., Kanae, S., Oki, T. 2015. Reevaluation of future water stress due to socio-economic and climate factors under a warming climate. Hydrol. Sci. J. 60, 14–29. DOI: 10.1080/02626667.2014.88806710.1080/02626667.2014.888067
Laaha, G., Parajka, J., Viglione, A., Koffler, D., Haslinger, K., Schöner, W., Zehetgruber, J., et al. 2016. A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System Sciences 20, 3967. DOI: 10.5194/hess-20-3967-201610.5194/hess-20-3967-2016
Lavalle, C., Baranzelli, C., Batista e Silva, F., Mubareka, S., Rocha Gomes, C., Koomen, E., Hilferink, M. 2011. A high resolution land use/cover modelling framework for Europe. In: ICCSA 2011, Part I, LNCS 6782, 60–75.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., Kaspar, F. 2006. Estimating the Impact of Global Change on Flood and Drought Risks in Europe: A Continental, Integrated Analysis. Climatic Change 75, 273–299, DOI:10.1007/s10584-006-6338-4.10.1007/s10584-006-6338-4
Malagó, A., Bouraoui, F., Vigiak, O., Grizetti, B., Pastori, M. 2017 Modelling water and nutrient fluxes in the Danube River Basin. Science of The Total Environment 603–604, 196–218. DOI: 10.1016/j.scitotenv.2017.05.24210.1016/j.scitotenv.2017.05.242
Moss, R., et al. 2010. The next generation of scenarios for climate change research and assessment, Nature 463, 747–756. DOI: 10.1038/nature0882310.1038/08823
Mubareka, S., Maes, J., Lavalle, C., De Roo, A. 2013. Estimation of water requirements by livestock in Europe. Ecosyst. Serv. 4, 139–145. DOI: 10.1016/j.ecoser.2013.03.00110.1016/j.ecoser.2013.03.001
Pieczka, I., Pongrácz, R., Bartholy, J. 2011. Comparison of Simulated Trends of Regional Climate Change in the Carpathian Basin for the 21st Century Using Three Different Emission Scenarios. Acta Silvatica et Lignaria Hungarica 7, 9–22.
Prudhomme, C., et al. 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267. DOI: 10.1073/pnas.122247311010.1073/pnas.1222473110
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., Rafai, P. 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57, DOI:10.1007/s10584-011-0149-y.10.1007/s10584-011-0149-y
Schewe, J., et al. 2014. Multimodel assessment of water scarcity under climate change Proc. Natl Acad. Sci. USA 111, 3245–3250. DOI: 10.1073/pnas.122246011010.1073/pnas.1222460110
Schlosser, C. A., Strzepek, K., Gao, X., Fant, C., Blanc, E., Paltsev, S., Jacoby, H., Reily, J. 2014. The future of global water stress: an integrated assessment. Earth’s Future 2, 341–361. DOI: 10.1002/2014ef00023810.1002/2014ef000238
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., Bierkens, M. F. P. 2012. Global patterns of change in discharge regimes for 2100. Hydrol. Earth Syst. Sci. 16, 1047–1062. DOI:10.5194/hess-16-1047-2012.10.5194/hess-16-1047-2012
Stagl, J.C., Hattermann, F.F. 2015. Impacts of climate change on the hydrological regime of the Danube River and its tributaries using an ensemble of climate scenarios. Water 7, 6139–6172. DOI: 10.3390/w711613910.3390/w7116139
Stahl, K. 2001. Hydrological Drought – a Study across Europe, PhD thesis, Freiburger Schriften zur hydrologie (No. 15), Institut fur Hydrologies, Universitat Freiburg, Freiburg.
Thiemig, V., Bisselink, B., Pappenberger, F., Thielen, J. 2015. A panAfrican medium-range ensemble flood forecast system. Hydrol. Earth Syst. Sci. 19, 3365–3385. DOI: 10.5194/hess-19-3365-2015.10.5194/hess-19-3365-2015
Vandecasteele, I., Bianchi, A., Batista e Silva, F., Lavalle, C., Batelaan, O. 2014. Mapping current and future European public water withdrawals and consumption. Hydrol. Earth Syst. Sci. 18, 407–416. DOI:10.5194/hess-18-407-2014.10.5194/hess-18-407-2014
van der Knijff J.M., Younis, J., De Roo, A.P.J. 2010. LISFLOOD: A GIS-based distributed model for river-basin scale water balance and flood simulation, International Journal of Geographical Information Science 24(2), 189–212. DOI: 10.1080/1365881080254915410.1080/13658810802549154
van Vliet, M. T. H., Franssen, W. H. P., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., Kabat, P. 2013. Global river discharge and water temperature under climate change. Glob. Environ. Change 23, 450–464. DOI: 10.1016/j.gloenvcha.2012.11.00210.1016/j.gloenvcha.2012.11.002
Vörösmarty, C. J., Green, P., Salisbury, J., Lammers, R. B. 2000. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 289, 284–288, DOI:10.1126/science.289.5477.284.10.1126/.289.5477.284
Wada, Y., Gleeson, T., Esnault, L. 2014. Wedge approach to water stress. Nat. Geosci. 7, 615–617. DOI: 10.1038/ngeo22410.1038/ngeo224