The Impact of the Energy Crisis on Optimal Stock Investor Decisions

Main Article Content

György Csontos
Gergő Tömöri

Abstract

Crises in the 2020s have shocked a particularly strong impact on the central European countries outside the euro area, which are more financially vulnerable and exposed to heightened geopolitical conflicts, and within them, Hungary, which has had a particular government response to the crisis. Our research objective was to investigate the impact of the energy crisis on the Hungarian stock market as a consequence of the combination of greening policies, the post-Covid reopening and the EU sanctions policy on Russian energy imports, focusing on the blue chips and the stock of biggest complex (renewable and non-renewable) energy producer and trader company in the Hungarian market. In this context, our aim is to determine the impact of the turbulent crisis phenomena in the period 2020-2023, with a focus on energy price inflation, on the structure of a portfolio of the 5 stocks mentioned above optimised based on mean-variance and mean-Gini. Since based on both methods, although differently, significantly increased the portfolio weight of the same energy company stocks in the energy crisis, it can be concluded that the change in the composition of the diversified portfolio reflected the impact of macroeconomic conditions on the stock market.

Downloads

Download data is not yet available.

Article Details

How to Cite
Csontos, György, and Tömöri Gergő. 2024. “The Impact of the Energy Crisis on Optimal Stock Investor Decisions”. Jelenkori Társadalmi és Gazdasági Folyamatok 19 (1-2):31-47. https://doi.org/10.14232/jtgf.2024.1-2.31-47.
Section
Economic and financial analysis

References

Acharya Viral, V., Pedersen, L. H., Philippon, T., Richardson, M. (2017): Measuring systematic risk. The Review of Financial Studies, 30 (1): 2–47. https://doi.org/10.1093/rfs/hhw088

Agouram, J., Lakhnati, G. (2016): Mean-Gini and mean-extended gini portfolio selection: An empirical analysis. Risk Governance and Control: Financial Markets and Institutions, 6 (3-1): 59–66. https://doi.org/10.22495/RCGV6I3C1ART7

Anagnostopoulos, K. P., Mamanis, G. (2010): A portfolio optimization model with three objectives and discrete variables. Computers and Operations Research, 37 (7): 1285–1297. https://doi.org/10.1016/j.cor.2009.09.009

Bakos P. (2020): A COVID-19 hatása a tőkepiacokra. <https://www.bet.hu/Rolunk/Sajtoszoba/szakmai-cikkek-es-tanulmanyok/a-covid-19-hatasa-a-tokepiacokra> (2023.08.02.)

Best, M. J. (2010): Portfolio optimization. CRC Press, USA.

Brealey, R. A., Myers, S. C. (2005): Modern corporate finance. Budapest, Panem.

Brückner G. (2023): Háború, energiaválság, különadók: a BUX-index tavaly 13,6 százalékkal gyengült. <https://telex.hu/gazdasag/2023/01/01/tozsde-reszveny-valsag-haboru-kulonadok-bux-index-minusz13-6-szazalek> (2023.09.05.)

Bugár Gy. (2017): Mérföldkövek a befektetési kockázat modellezésben. Szigma, 48 (1-2): 19–32.

Bugár Gy., Uzsoki M. (2006): Befektetések kockázatának mérése. Statisztikai Szemle, 84 (9): 876–898.

Brown, C, E. (1998): Coefficient of variation. Applied multivariate statistics in geohydrology and related sciences. Springer Berlin Heidelberg. 155–157.

Chaweewanchon, A., Chaysiri, R. (2022): Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning. International Journal of Financial Studies, 10 (3): 64. https://doi.org/10.3390/ijfs10030064

Chen, J. (2022): Put Option: What It Is, How It Works, and How to Trade Them <https://www.investopedia.com/terms/p/putoption.asp> (2023.06.21.)

Cheung, C. S., Kwan, C. C., Miu, P. C. (2007): Mean-Gini portfolio analysis: A pedagogic illustration. Spreadsheets in Education, 2 (2): 194–207.

Elektronikus Beszámoló Portál (2024),

Goldthau, A. C., Youngs, R. (2023): The EU energy crisis and a new geopolitics of climate transition. JCMS: Journal of Common Market Studies, 61: 115-124.

Gunjan, A., Bhattacharyya, S. (2023): A brief review of portfolio optimization techniques. Artificial Intelligence Review, 56 (5): 3847–3886.

Hali, N. A., Yuliati, A. (2020): Markowitz model investment portfolio optimization: a review theory. International Journal of Research in Community Services, 1 (3): 14–18.

Markowitz, H. M. (1952): Portfolio Selection. The Journal of Finance, 7 (1): 77–91.

Hoe, L. W., Jaaman, S. H., Siew, L. W. (2020): Portfolio optimization of technology companies in Malaysia with Mean-Gini Model. Menemui Matematik (Discovering Mathematics), 42 (1): 45–50.

Hutter, C., Weber, E. (2022): Russia-Ukraine war: Short-run production and labour market effects of the energy crisis, 10. https://doi.org/10.48720/IAB.DP.2210

Jamal, A., Ghizlane, L. (2015): A Comparative Study of Mean-Variance and Mean Gini Portfolio Selection Using VaR and CVaR. Journal of Financial Risk Management, 4 (2): 70–79. http://doi.org/10.4236/jfrm.2015.42007

Ji, R. (2016): Models and Algorithms for Portfolio Optimization Under Uncertainty. Doctoral dissertation, The George Washington University.

Ji, R., Lejeune, M. A., Prasad, S. Y. (2018): Interactive portfolio optimization using Mean-Gini criteria. In: Masri, H., Pérez-Gladish, B., Zopounidis, C. (szerk): Financial Decision Aid Using Multiple Criteria: Recent Models and Applications. 49–91. https://doi.org/10.1007/978-3-319-68876-3_3

Keller K., Kaszás N., Kovács L. (2022): Turisztikai szolgáltatók válságra való felkészültsége a Covid19 tekintetében. Turizmus Bulletin, 22 (4): 26–35. https://doi.org/10.14267/TURBULL.2022v22n4.3

Lakatos V. (2023): Fenntarthatóság, felelőségvállalás, tőkepiaci értékítélet. Gazdálkodás, 67 (5): 425-442. https://doi.org/10.53079/GAZDALKODAS.67.5.t.pp_425-442

Madár I., Weinhardt A. (2022): Kiszámoltuk: durván megüti a magyar gazdaságot az energiaválság <https://www.portfolio.hu/gazdasag/20220321/kiszamoltuk-durvan-meguti-a-magyar-gazdasagot-az-energiavalsag-534195> (2023.09.04.)

Mansini, R., Ogryczak, W., Speranza, M. G., Mansini, R., Ogryczak, W., Speranza, M. G. (2015): Linear models for portfolio optimization. Linear and Mixed Integer Programming for Portfolio Optimization. Springer Cham. 19–45.

Mba, J. C., Ababio, K. A., Agyei, S. K. (2022): Markowitz mean-variance portfolio selection and optimization under a behavioral spectacle: New empirical evidence. International Journal of Financial Studies, 10 (2): 28. http://doi.org/10.3390/ijfs10020028

Mangram, M. E. (2013): A simplified perspective of the Markowitz portfolio theory. Global journal of businnes research, 7 (1): 59–70.

Montgomery, D. C., Runger, C. (1994): Applied Statistics and Probability for Engineers. John Wiley and Sons. New York, Chichester.

Mukhopadhyay (2023): Market Risk Premium <https://www.wallstreetmojo.com/market-risk-premium/> (2023.06.22.)

Naccarato, A., Pierini, A., Ferraro, G. (2021): Markowitz portfolio optimization through pairs trading cointegrated strategy in long-term investment. Annals of Operations Research, 299 (1-2): 81–99.

Ozili, P. K., Ozen, E. (2023): Global energy crisis: impact on the global economy. In: Sood, K., Grima. S., Young, P., Ozen, E., Balusamy, B. (szerk.) The Impact of Climate Change and Sustainability Standards on the Insurance Market, 439–454. https://doi.org/10.1002/9781394167944.ch29

Pálos M. (2023): Az Oroszországban maradt nagy európai cégek 100 milliárd eurót buktak <https://g7.hu/vallalat/20230808/az-oroszorszagban-maradt-nagy-europai-cegek-100-milliard-eurot-buktak/>

Pupos T. (2013): Pénzügyi ismeretek. Debreceni Egyetem, Debrecen.

Ringuest, J. L., Graves, S. B., Case, R. H. (2004): Mean–Gini analysis in R&D portfolio selection. European Journal of Operational Research, 154 (1): 157–169. https://doi.org/10.1016/S0377-2217(02)00708-7

Ruoyong, Y., James, O. B. (1994): Estimation of a covariance matrix using the reference prior. The annals of Statistics, 22 (3): 1995–1211-

Sayantan, M. (2023): Market Risk Premium <https://www.wallstreetmojo.com/market-risk-premium/> ( 2023.06.22.)

Schechtman, E., Yitzhaki, S., Artsev, Y. (2008): The similarity between mean-variance and mean-Gini: Testing for equality of Gini correlations. Advances in Investment Analysis and Portfolio Management, (3): 97–122.

Sergen, C. (2023): A Guide to Covariance, Covariance Matrix and Eigenvalues <https://builtin.com/data-science/covariance-matrix> (2023.09.07.)

Shalit, H., Yitzhaki, S. (1984): Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets. The Journal of Finance, 39 (5): 1449–1468.

Shalit, H., Yitzhaki, S. (2005): The mean‐Gini efficient portfolio frontier. Journal of Financial Research, 28 (1): 59–75.

Siew, L. W., Jaaman, S. H., Hoe, L. W. (2019): Mathematical modelling of risk in portfolio optimization with Mean-Gini approach. Journal of Physics: Conference Series, 1212 (1): 012031. https://10.1088/1742-6596/1212/1/012031

Steven, N. (2022): How Can I Measure Portfolio Variance? <https://www.investopedia.com/ask/answers/071515/how-can-i-measure-portfolio-variance.asp> (2023.06.27.)

Trichilli, Y., Abbes, M. B., Masmoudi, A. (2020): Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis. Research in International Business and Finance, 51: 101071. https://doi.org/10.1016/j.ribaf.2019.101071

Tola, V., Lillo, F., Gallegati, M., Mantegna, R. N. (2008): Cluster analysis for portfolio optimization. Journal of Economic Dynamics and Control, 32 (1): 235–258.

Yang, R., Berger, J. O. (1994): Estimation of a covariance matrix using the reference prior. The Annals of Statistics, 22 (3): 1195–1211.

Zanjirdar, M. (2020): Overview of portfolio optimization models. Advances in mathematical finance and applications, 5 (4): 419–435. https://doi.org/10.22034/AMFA.2020.674941

Zsótér B. (2006): Turizmus Mezőhegyesen: a Hotel Nonius bemutatása. In: Gál József (szerk.): Európai Uniós Kutatási és Oktatási Projektek Napja és Leonardo da Vinci Learn at Work Projekt - találkozó [European Union Research and Educational Projects Day and Leonardo da Vinci Learn at Work Project Meeting]. Delfin Computer Informatikai Zrt., Hódmezővásárhely. CD lemez.

Zsótér B., Bagi B. (2020): Gyümölcsfeldolgozó üzem létesítésének pénzügyi előkészületei. Jelenkori társadalmi és gazdasági folyamatok, 15 (1-2): 125–130. http://doi.org/10.14232/jtgf.2020.1-2.125-130