Energy Market Trends in the Light of Recent Events – Focus on Electricity
Main Article Content
Abstract
The European Union's (EU) drive toward energy transition is underscored by vigorous initiatives that aim to increase reliance on renewables, address climate change, and support cleaner energy production. However, integrating renewables like wind and solar into the energy portfolio transforms market dynamics. The objective of this study is to assess the past decades trends in wholesale electricity price developments and renewable energies, review the wholesale electricity market and identify the key factors affecting electricity prices. The merit order mechanism in the EU's electricity markets, where electricity supply sources are dispatched based on ascending order of marginal costs, has been significantly impacted by the increasing share of low-marginal-cost renewable energy, potentially lowering wholesale electricity prices. Yet, the intermittent nature of renewables introduces volatility, necessitating flexible backup options, often provided by gas-fired plants, which in turn influences gas demand and pricing. The early 2020s, marked by a pandemic and warfare, have illustrated the profound effects that such crises can have on energy markets, underlining the interdependence of global energy systems and the EU's vulnerability concerning gas imports, with price fluctuations becoming a notable concern for both market stability and consumer affordability. During such challenging times, the energy trilemma – balancing sustainability, affordability, and security – becomes increasingly difficult. Despite its complexities, this energy transition is crucial for the well-being of our planet and future generations.
Downloads
Article Details
References
Bahar, H., Sauvage, J. (2013): Cross-Border Trade in Electricity and the Development of Renewables-Based Electric Power. OECD Trade and Environment Working Papers, 2013/02: 1–76. https://doi.org/10.1787/5k4869cdwnzr-en
Bhattacharyya, S. C. (2011): Energy Economics. Concepts, Issues, Markets and Governance. Springer: London, United Kingdom. https://doi.org/10.1007/978-0-85729-268-1
Bompard, E., Mosca, C., Colella, P., Antonopoulos, G., Fulli, G., Masera, M., Poncela-Blanco, M., Vitiello, S. (2020): The Immediate Impacts of COVID-19 on European Electricity Systems: A First Assessment and Lessons Learned. Energies, 14 (1): 96, 1–22. https://doi.org/10.3390/en14010096
Buchan, D., Keay, M. (2016): Europe’s Long Energy Journey: Towards an Energy Union? Oxford University Press: Oxford, United Kingdom.
Creti, A. (2019): Economics of Electricity: Markets, Competition and Rules. Cambridge University Press: Cambridge, United Kingdom.
Deutsch N., Fiáth A., Virág M., Berényi L. (2018): Nuclear power - additions to wholesale electricity prices and margin of safety. WSEAS Transactions on Business and Economics, 15: 197–212.
Energy-Charts (é.n.): Average spot market prices. <https://energy-charts.info/charts/price_average/chart.htm?l=en&c=DE> (2023.12.17.)
European Commission (2010): Energy 2020 A strategy for competitive, sustainable and secure energy. COM (2010) 639: 1–21. European Commission: Brussels, Belgium.
European Commission (2014): Quarterly Report Energy on European Gas Markets. Market Observatory for Energy, 7 (4): 1–33. European Commission: Brussels, Belgium.
European Commission (2016): The EU Emissions Trading System (EU ETS). European Commission: Brussels, Belgium. https://doi.org/10.2834/6083
European Commission (2021): Quarterly Report on European Electricity Markets with focus on the impact of high carbon prices in the electricity sector. Market Observatory for Energy, 14 (1): 1–49. European Commission: Brussels, Belgium.
Eurostat (é.n.-a): Gross production of electricity and derived heat from combustible fuels by type of plant and operator. <https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_pehcf/default/table> (2024.01.11.)
Eurostat (é.n.-b): Gross production of electricity and derived heat from non-combustible fuels by type of plant and operator. <https://ec.europa.eu/eurostat/databrowser/view/nrg_ind_pehnf/default/table> (2024.01.11.)
Hafner, M., Luciani, G. (2022): The Palgrave Handbook of International Energy Economics. Palgrave Macmillan: Cham, Switzerland. https://doi.org/10.1007/978-3-030-86884-0
Houtman, A., Reins, L. (2022): Energy Transition in the EU: Targets, Market Regulation and Law. In: Wood, G., Onyango, V., Yenneti, K., Liakopoulou, M. A. (szerk.): The Palgrave Handbook of Zero Carbon Energy Systems and Energy Transitions. Palgrave Studies in Energy Transitions, 1–26. Palgrave Macmillan: Cham, Switzerland. https://doi.org/10.1007/978-3-030-74380-2_2-2
HUPX (é.n.): Historikus adatok. <https://hupx.hu/hu/piaci-adatok/dam/historikus-adatok> (2023.12.17.)
International Energy Agency (2020): European Union 2020 Energy Policy Review. International Energy Agency: Paris, France.
International Energy Agency (2021): Hydropower Special Market Report. International Energy Agency: Paris, France.
International Energy Agency (2022): Renewables 2022. International Energy Agency: Paris, France.
International Energy Agency (2023a): Europe’s energy crisis: Understanding the drivers of the fall in electricity demand. International Energy Agency: Paris, France.
International Energy Agency (2023b): Global Gas Security Review 2023. International Energy Agency: Paris, France.
International Energy Agency (2023c): Electricity Market Report 2023. International Energy Agency: Paris, France.
Investing.com. (é.n.): Energy futures prices. <https://www.investing.com/> (2023.12.17.)
Leal-Arcas, R., Grasso, C., Alemany Ríos, J. (2016): Energy Security, Trade and the EU. Edward Elgar Publishing: Cheltenham, United Kingdom.
Rathmann, M. (2007): Do support systems for RES-E reduce EU-ETS-driven electricity prices? Energy Policy, 35 (1): 342–349. https://doi.org/10.1016/j.enpol.2005.11.029
Refinitiv Eikon. (é.n.): Eikon Energy Commodities. <https://www.lseg.com/en/data-analytics> (2023.12.17)
Szczepanski, M. (2019): A decade on from the crisis. Main responses and remaining challenges. Briefing. European Parliamentary Research Service: Brussels, Belgium.
Szénási E. (2021): Globális energiaválság: európai sajátosságok és következmények. Academia.edu Publishing: San Francisco, CA.
Tertre, M. G., Rivas, M., Saveyn, B., Mettenheim, M. von, Serre, C., Martínez, I., Auger, T., Babić, A., Tognoni, M., Zucker, A. (2023): Structural changes in energy markets and price implications: effects of the recent energy crisis and perspectives of the green transition. European Central Bank: Frankfurt, Germany.
Timmons, D., Harris, J. M., Roach, B. (2014): The Economics of Renewable Energy. Global Development And Environment Institute, Tufts University: Medford, MA, United States.
Tol, R. (2023): Navigating the Energy Trilemma during Geopolitical and Environmental Crises. ADBI Working Paper, 1372: 1–26. https://doi.org/10.56506/EBHD4081
Tóth A., Bencs P. (2023): Megújuló energia átalakulását szabályozó rendelkezések. Jelenkori társadalmi és gazdasági folyamatok, 18 (különszám): 503–513. https://doi.org/10.14232/jtgf.2023.kulonszam.503-513
Vadászi M., Tomkóné Nyiri K. (2023): A felszín alatti hidrogéntárolás kihívásai az időszakos megújuló villamosenergia termelés egyensúlyozásában. Jelenkori társadalmi és gazdasági folyamatok, 18 (különszám): 537–547. https://doi.org/10.14232/jtgf.2023.kulonszam.537-547
Varro, L., Beyer, S., Journeay-Kaler, P., Gaffney, K. (2020): Green stimulus after the 2008 crisis. International Energy Agency: Paris, France.
Zachmann, G., Hirth, L., Heussaff, C., Schlecht, I., Mühlenpfordt, J., Eicke, A. (2023): The design of the European electricity market. Current proposals and ways ahead. Study. European Parliament: Luxembourg City, Luxembourg.
Zakeri, B., Staffell, I., Dodds, P., Grubb, M., Ekins, P., Jääskeläinen, J., Cross, S., Helin, K., Gissey, G. C. (2023): Role of Natural Gas in Electricity Prices. Energy Reports, 10: 2778–2792. https://doi.org/10.1016/J.EGYR.2023.09.069
Zhong, H., Tan, Z., He, Y., Xie, L., Kang, C. (2020): Implications of COVID-19 for the electricity industry: A comprehensive review. CSEE Journal of Power and Energy Systems, 6 (3): 489–495. https://doi.org/10.17775/CSEEJPES.2020.02500