Assessment of Landscape Carrying Capacity as a Key Method for Territorial Planning
Main Article Content
Abstract
Humanity needs sustainable solutions for all aspects of life to meet the challenges of the 21st century. Traditional territorial planning models also need development to ensure more nature’s quality and landscape-centered planning process. Landscape carrying capacity (LCC) methods serve us potential basis for landscape evaluation based on its extensive literature. This research presents an approach to LCC based landscape assessment as an intial step of territorial planning. This article presents an ecological approached method for simultaneus evaluation of landscape sensitivity (LSe) and landscape load (LLo) based on analytical hierarchy process combined with GIS tools. This method was applied in Keszthely Mountain, a rural landscape, in western Hungary. The assessment of LSe and also LLo based on five-five indicators (e.g., Ecosystem Diversity Sensitivity; In-year Permanently Bare Soil; Landscape Protection Sensitivity; Artificial Agricultural Land use Load; Linear Fragmentation Load; Lack of Vegetation). The final LCC composite was provided by a multi-step evaluation progress. Comparing the LSe composite to LLo composite showed the marginal areas of Keszthely Mountain are maximum or over loaded. The central area of Mountain is generally more loadable despite some existing loads such as infrastructure or mines. LCC evaluations should assess the main impact factors of landscape. However, potential developing points are the assessments of more specific fastors (e.g., extremities of climatic conditions, landscape suitability). Comparing the sustainable land use plan (or its scenarios) with local socio-economic needs and plans should be the second step of territorial planning. The evaluation and the sustainable land use plan provide more rationalised possibilities for socio-economic needs make more sustainable decisions, plans and strategies.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
x
References
Agrárminisztérium 2019. Magyarország Ökoszisztéma alaptérképe. DOI: 10.34811/OSZ.ALAPTERKEP
Baby, S., Nathawat, M.S., Al-Sarawi, M.A. 2014. Major Impacts from Anthropogenic Activities on Landscape Carrying Capacity of Kuwaiti Coast. Polish Journal of Environmental Studies, 23(1), 7–17.
Bardgett, R.D. 2005. The biology of soil: A community and ecosystem approach. Oxford University Press.
Battisti, F., Campo, O., Manganelli, B. 2022. Land Management in Territorial Planning: Analysis, Appraisal, Strategies for Sustainability - A Review of Studies and Research. Land 11(7), 1007. DOI: 10.3390/land11071007
Bölön, J., Molnár, Zs., Kun A. 2011. Magyarország élőhelyei: Vegetációtípusok leírása és határozója : ÁNÉR 2011. MTA Ökológiai és Botanikai Kutatóintézete.
Chi, Y., Zhang, Z., Gao, J., Xie, Z., Zhao, M., Wang, E. 2019. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecological Indicators 101, 221–237. DOI: 10.1016/j.ecolind.2019.01.012
Cocheci, R.M., Ianoş, I., Sârbu, C.N., Sorensen, A., Saghin, I., Secăreanu, G. 2019. Assessing environmental fragility in a mining areafor specific spatial planning purposes. Moravian Geographical Reports 27(3), 169–182. DOI: 10.2478/mgr-2019-0013
Csüllög, G., Horváth, G., Tamás, L., Szabó, M., Munkácsy, B. 2017. Quantitative Assessment of Landscape Load Caused by Mining Activity. European Countryside 9(2), 230–244. DOI: 10.1515/euco-2017-0014
De Groot, R.S., Wilson, M.A., Boumans, R.M.J. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41(3), 393–408. DOI: 10.1016/S0921-8009(02)00089-7
Defries, R.S., Townshend, J.R.G. 1994. NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing 15(17), 3567–3586. DOI: 10.1080/01431169408954345
Dövényi, Z. (Ed.). 2010. Magyarország kistájainak katasztere. MTA Földrajztudományi Kutatóintézet
European Environment Agency & European Environment Agency 2019. CORINE Land Cover 2018 (vector), Europe, 6-yearly—Version 2020_20u1, May 2020 (Version 20.01) [FGeo,Spatialite]. European Environment Agency. DOI: 10.2909/71C95A07-E296-44FC-B22B-415F42ACFDF0
Faragó, L. 2003. Koncepcióvezérelt tervezés általános elmélete. Online available at https://pea.lib.pte.hu/bitstream/handle/pea/ 16090/farago-laszlo-phd-2003.pdf?sequence=1&isAllowed =y
González-García, A., Palomo, I., González, J.A., López, C.A., Montes, C. 2020. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 94, 104493. DOI: 10.1016/j.landusepol.2020.104493
Gottero, E., Cassatella, C. 2017. Landscape indicators for rural development policies. Application of a core set in the case study of Piedmont Region. Environmental Impact Assessment Review 65, 75–85. DOI: 10.1016/j.eiar.2017.04.002
Baral, H., Holmgren, P. 2015. A framework for measuring sustainability outcomes for landscape investments. Center for International Forestry Research (CIFOR). DOI: 10.17528/cifor/005761
Hersperger, A.M., Bürgi, M., Wende, W., Bacău, S., Grădinaru, S.R. 2020. Does landscape play a role in strategic spatial planning of European urban regions? Landscape and Urban Planning 194, 103702. DOI: 10.1016/j.landurbplan.2019.103702
Kang, J., Zhang, X., Zhu, X., Zhang, B. 2021. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Global Ecology and Conservation 26, e01472. DOI: 10.1016/j.gecco.2021.e01472
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. 2015. Land planning as a support for sustainable development based on tourism: A case study of Slovak rural region. Handbook on Tourism Development and Management, 191–208.
KvVM Decree no. 16/2009. (X. 8.) on designating surface protection zone for caves, Pub. L. No. KvVM Decree no. 16/2009. (X. 8.) on designating surface protection zone for caves (2009). Online available at https://njt.hu/jogszabaly/2009-16-20-0N; http://web.okir.hu/map/?config=TIR&lang=hu
Lal, R. 2001. Soil degradation by erosion. Land Degradation & Development 12(6), 519–539. DOI: 10.1002/ldr.472
Landsat dataset, https://earthexplorer.usgs.gov/, 2022-12-10
(ID: LC09_L2SP_189027_20220324_20220326_02_T1;
ID: LC09_L2SP_189027_20220511_20220513_02_T1;
ID: LC09_L2SP_189027_20220612_20220614_02_T1;
ID: LC08_L2SP_189027_20220722_20220802_02_T1;
ID: LC09_L2SP_189027_20221018_20221020_02_T1).
Lane, M. 2010. The carrying capacity imperative: Assessing regional carrying capacity methodologies for sustainable land-use planning. Land Use Policy 27(4), 1038–1045. DOI: 10.1016/j.landusepol.2010.01.006
Liu, Y., Zhou, Y. 2021. Territory spatial planning and national governance system in China. Land Use Policy 102, 105288. DOI: 10.1016/j.landusepol.2021.105288
Manolaki, P., Zotos, S., Vogiatzakis, I.N. 2020. An integrated ecological and cultural framework for landscape sensitivity assessment in Cyprus. Land Use Policy 92, 104336. DOI: 10.1016/j.landusepol.2019.104336
Map data ©2015 Google used in QGIS 2.18., https://www.google.at/permissions/geoguidelines/attr-guide.html, 2023-07-30.
National Spatial Development Plan of Hungary Map Annexes, Act no. CXXXIX of 2018. on Spatial Development Plan of Hungary and its Priority Regions (Act and map annexes), Pub. L. No. Act no. CXXXIX of 2018. on Spatial Development Plan of Hungary and its Priority Regions (Act and map annexes) (2019). Online available at https://njt.hu/jogszabaly/2018-139-00-00
Nature Protection datasets and maps, Online available at http://gis.teir.hu/arcgis/services/TeIR_GIS/teirgis_termeszetvedelem/MapServer/WMSServer?, 2022-12-10.
Novák, J., Lukas, V., Rodriguez-Moreno, F., Křen, J. 2018. Assessment of Soil Variability of South Moravian Region Based on the Satellite Imagery. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 66(1), 119–129. DOI: 10.11118/actaun201866010119
OpenStreetMap road dataset. Online available at https://extract.bbbike.org/, 2022-12-10.
Pásztor, L., Szabó, J., Bakacsi, Z., Laborczi, A. 2013. Magyarországi Talajok Biomassza Termelő Képességét Jellemző Országos Talajértékszám Térkép. (MTMT: 2844804)
Pogliani, L., Ronchi, S., Arcidiacono, A., Di Martino, V., Mazza, F. 2023. Regeneration in an ecological perspective. Urban and territorial equalisation for the provision of ecosystem services in the Metropolitan City of Milan. Land Use Policy 129, 106606. DOI: 10.1016/j.landusepol.2023.106606
Ronchi, S., Arcidiacono, A., Pogliani, L. 2020. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. Sustainable Cities and Society 53, 101907. DOI: 10.1016/j.scs.2019.101907
Shuttle Radar Topography Mission (SRTM). Online available at https://earthexplorer.usgs.gov/, ID: SRTM1N46E017V3, 2022-12-01
Sotille, M.E., Bremer, U.F., Vieira, G., Velho, L.F., Petsch, C., Simões, J.C. 2020. Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic vegetation. Applied Geography 125, 102322. DOI: 10.1016/j.apgeog.2020.102322
Store, R., Karjalainen, E., Haara, A., Leskinen, P., Nivala, V. 2015. Producing a sensitivity assessment method for visual forest landscapes. Landscape and Urban Planning 144, 128–141. DOI: 10.1016/j.landurbplan.2015.06.009
Swanwick, C. 2002. Landscape Character Assessment: Guidance for England and Scotland. The Countryside Agency and Scottish Natural Heritage. Online available at https://digital.nls.uk/pubs/e-monographs/2020/ 216649977.23.pdf
Tóth, T. (2011). Területfejlesztés. Szent István Egyetem Gazdaság- és Társadalomtudományi Kar. Gödöllő. 2011
Tudor, C. 2014. An Approach to Landscape Character Assessment. Natural England. Online available at https://assets.publishing.service.gov.uk/media/5aabd31340f0b64ab4b7576e/landscape-character-assessment.pdf
Tudor, C. 2019. An approach to landscape sensitivity assessment—To inform spatial planning and land management. Natural England. Online available at https://assets.publishing.service.gov.uk/media/5d2f005aed915d2fe684675b/landscape-sensitivity-assessment-2019.pdf
Uuemaa, E., Roosaare, J., Kanal, A., Mander, Ü. 2008. Spatial correlograms of soil cover as an indicator of landscape heterogeneity. Ecological Indicators 8(6), 783–794. DOI: 10.1016/j.ecolind.2006.12.002
Uuemaa, E., Roosaare, J., Oja, T., Mander, Ü. 2011. Analysing the spatial structure of the Estonian landscapes: Which landscape metrics are the most suitable for comparing different landscapes? Estonian Journal of Ecology 60(1), 70. DOI: 10.3176/eco.2011.1.06
Walz, U., Stein, C. 2018. Indicator for a monitoring of Germany’s landscape attractiveness. Ecological Indicators 94, 64–73. DOI: 10.1016/j.ecolind.2017.06.052
Waterbasin Management Plan of Hungary, 1-1 annex and map—2021, General Directorate of Water Management. (2022). Online available at https://vizeink.hu/vizgyujto-gazdalkodasi-terv-2019-2021/vgt3-elfogadott/#up01
Wellmann, T., Lausch, A., Andersson, E., Knapp, S., Cortinovis, C., Jache, J., Scheuer, S., Kremer, P., Mascarenhas, A., Kraemer, R., Haase, A., Schug, F., Haase, D. 2020. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landscape and Urban Planning 204, 103921. DOI: 10.1016/j.landurbplan.2020.103921
Westman, W.E. 1977. How Much Are Nature’s Services Worth?: Measuring the social benefits of ecosystem functioning is both controversial and illuminating. Science 197(4307), 960–964. DOI: 10.1126/science.197.4307.960