Description of the Characteristic Soil Profiles and Indication of the Degree of Sheet Erosion in Verpelét

Main Article Content

Anna Dobos
Tamás Péter Hegyi
Dániel László Bujtor
Zsófia Tolnai
Balázs Hegyi

Abstract

In the administrative area of Verpelét settlement, we excavated 22 soil profiles in July and August of 2014 to show what soil types build up the area, as well as the extent of soil erosion in each profile. The description of the soil profiles was carried out based on the methods of the FAO (2006) and Novák’s Soil Practicality (2013). In the study area, we found chernozem brown forest soils (Chernozems), alluvial meadow soils (Fluvisols), humous sandy soils (Arenosols), humous alluvial soils (Fluvisols), meadow chernozem soils (Chernozems), Ramann brown forest soils (Cambisols), and brown forest soils with clay illuviation (Luvisols). We examined the sheet erosion in the vicinity of Verpelét using three methods: (1) GIS method considering slope category values, (2) examining the geomorphological character of the environment around the soil profiles, and (3) determining the sheet erosion within the specific soil profiles using the methods of Kerényi (1991) and Kerényi and Martonné Erdős (1994). The first method did not indicate any erosion-prone areas in the Verpelét vicinity; however, we were able to detect greater soil erosion in the excavated soil profiles. Using the second method, 32% of the excavated soil profiles were strongly eroded, 36% were moderately eroded, 4.5% were weakly eroded, and 27.5% showed accumulation conditions. However, our third method, which focused on specific soil profiles, indicated that 32% of the excavated soil profiles were strongly eroded, 63.5% were moderately eroded, and only 4.5% were weakly eroded. The question arises as to what causes this significant difference between the various methods, and where the significant sheet erosion in the examined profiles in Verpelét actually originates from. In order to investigate this question, we examined the 1st, 2nd, 3rd Military Survey Maps, the topographic map from 1990, the CLC18 satellite imagery and the 2023 version of Google Earth. The previously forested areas on these maps were already characterized by extensive arable land, and later by arable and vineyard areas. Today, Verpelét has become predominantly an actively cultivated agricultural landscape. Therefore, the significant sheet erosion can be attributed to the spread of inappropriate land use methods and significant anthropogenic impacts (β-euhemerobic level).

Downloads

Download data is not yet available.

Article Details

How to Cite
Dobos, Anna, Tamás Péter Hegyi, Dániel László Bujtor, Zsófia Tolnai, and Balázs Hegyi. 2024. “Description of the Characteristic Soil Profiles and Indication of the Degree of Sheet Erosion in Verpelét”. Journal of Environmental Geography 17 (1-4):73-90. https://doi.org/10.14232/jengeo-2024-45762.
Section
Articles
Author Biographies

Anna Dobos, Eszterházy Károly Catholic University

Department of Environmental Sciences and Landscape Ecology
university associate professor

Tamás Péter Hegyi, Eszterhazy Karoly Catholic University

Institute of Geography and Environmental Sciences

Dániel László Bujtor, Eszterhazy Karoly Catholic University

Department of Environmental Sciences and Landscape Ecology
Landscape Researches – Nature Conservation Talent Group

Zsófia Tolnai, Eszterhazy Karoly Catholic University

Department of Environmental Sciences and Landscape Ecology
Landscape Researches – Nature Conservation Talent Group

Balázs Hegyi, Eszterhazy Karoly Catholic University

Coal Commission Secretariat

Funding data

References

Amundson, R., Berhe, A.A., Jan, W., Hopmans, J.W., Olson, C., Sztein, A.E., Sparks, D.L. 2015. Soil and human security in the 21st century. Soil Science 348(6235), 1261071-1-6. DOI: 10.1126/science.1261071

Bakker, M.M., Govers, G., Doorn, A.M. van, Quetier, F., Chouvardas, M.D.A., Rounsevell, M.D.A. 2008. The response of soil erosion and sediment export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 98(3–4), 213–226. DOI: 10.1016/j.geomorph.2006.12.027.

Bakker, M.M., Govers, G., Kosmas, C., Vanacker, V., Van Oost, K., Rounsevell, M. 2005. Soil erosion as a driver of land-use change. Agriculture Ecosystem Environment 105(3), 467–481. DOI: 10.1016/j.agee.2004.07.009

Balogh, Sz., Sütő, L., Molják, S., Hegyi, B., Nagy, R. 2017. Methodology for a Unified Legend System of Land Cover Categories in Historical Maps (presentation material), In: Balázs, B. (Ed.): Az elmélet és a gyakorlat találkozása a térinformatikában. VIII. Theory Meets Practice in GIS, Debrecen Egyetemi Kiadó, Debrecen, 18. Online available at https://giskonferencia.unideb.hu/arch/GIS_Konf_kotet_2017.pdf (in Hungarian)

Bettoni, M., Maerker, M., Sacchi, R., Bosino, A., Conedera, M., Simoncelli, L., Vogel, S. 2022. What makes soil landscape robust? Landscape sensitivity towards land use changes in a Swiss Southern Alpine Valley. Science of The Total Environment 858(2), 159779, DOI: 10.1016/j.scitotenv.2022.159779

Biszak, S., Timár, G., Molnár, G., Jankó, A. 2007. The Third Military Survey (1869–1887), 1.25.000, Digitized Maps of the Habsburg Empire. Institute and Museum of War History of Hungary, ARCANUM Adatbázis Kft. Hungary (software)

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8, DOI: 10.1038/s41467-017-02142-7

Chasia, S., O. Olang, L., Juma, B., Sitoki L. 2024. Understanding the linkages between land-use transitions and soil erosion/sediment deposition: A case study of the transboundary Sio-Malaba-Malakisi watershed in Kenya and Uganda. Physics and Chemistry of the Earth Parts A/B/C, 133, 103529, ISSN 1474-7065, DOI: 10.1016/j.pce.2023.103529

Cimusa Kulimushi, L., Bigabwa Bashagaluke, J., Prasad, P., Heri-Kazi, A.B., Lal Kushwaha, N., Masroor, M., Choudhari, P., Elbeltagi, A., Sajjad, H., Mohammed, S. 2023. Soil erosion susceptibility mapping using ensemble machine learning models: A case study of upper Congo river sub-basin. Catena 222, Article 106858, 10.1016/J.CATENA.2022.106858

Csorba, P. 2021. Bükk. Bükkalja. In: Csorba, P. (ed.) Magyarország kistájai. Meridián Táj- és Környezetföldrajzi Alapítvány, Debrecen, 368–371. (in Hungarian)

Dobos, A. 2002. A Bükkalja II. Surface morphological description. In: Baráz, Cs. (ed.): A Bükki Nemzeti Park. hegyek, erdők, emberek. Bükki Nemzeti Park Igazgatósága, Eger, 217–228. (in Hungarian)

Dobos, A., Hegyi, B., Hegyi, P.T., Zelei, Z., Daragó, G., Tari, G. 2014: Soil Science Subproject. Verpelét (VP001 – VP022). Research Report, Kézirat, Eszterházy Károly Egyetem, Környezettudományi és Tájökológiai Tanszék, Eger, 375 p. (in Hungarian)

Dobos, A., Marschall, Z., Schmidt, J. 2005. Investigation of the connection between landscape factors in case of surrounding of the Castle Hill in Verpelét II. Geomorphological, climatic, and water system, soil science and botanical fundamentals. Az Eszterházy Károly Főiskola tudományos közleményei (Új sorozat 32. köt.). Tanulmányok a biológiai tudományok köréből. Acta Academiae Paedagogicae Agriensis. Sectio Biologiae 62–77. (in Hungarian)

Dobos, A., Schmidt, J. 2005. Investigation of the connection between landscape factors in case of surrounding of the Castle Hill in Verpelét I. Geological built up and the investigation of Quaternary sediments. Az Eszterházy Károly Főiskola tudományos közleményei (Új sorozat 32. köt.). Tanulmányok a biológiai tudományok köréből. Acta Academiae Paedagogicae Agriensis. Sectio Biologiae 47–61. (in Hungarian)

Donovan, M. 2022. Modelling soil loss from surface erosion at high-resolution to better understand sources and drivers across land uses and catchments; a national-scale assessment of Aotearoa, New Zealand. Environmental Modelling & Software 147, 105228, DOI: 10.1016/j.envsoft.2021.105228

FAO, 2006. Guidelines for Soil Description. Fourth Edition. Food and Agriculture Organization of the United Nations, Rome, 97 p.

García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: A review. Catena 81(1), 1–11. DOI: 10.1016/j.catena.2010.01.001

Global Soil Partnership Endorses Guidelines on Sustainable Soil Management 2016. Online available at http://www.fao.org/global-soil-partnership/resources/ highlights/detail/en/c/416516/

Gordon, J.E., Brazier, V., Thompson, D.B.A., Horsfield, D., 2001. Geo-ecology and the conservation management of sensitive upland landscapes in Scotland. Catena 42, 323–332. DOI: 10.1016/S0341-8162(00)00144-2

Institute and Museum of War History of Hungary 2006. The Second Military Survey (1806-1869), Digitized Maps of the Habsburg Empire, ARCANUM Adatbázis Kft. Hungary (software)

IUSS Working Group WRB. 2006. World Reference Base for Soil Resources 2006: a framework for international classification, correlation and communication. World Soil Resources Reports No. 103. FAO, Rome. 145 p.

Kerényi, A. 1991. Soil erosion: mapping, laboratory and field experiments. (Talajerózió. Térképezés, laboratóriumi és szabadföldi kísérletek.) Akadémiai Kiadó, Budapest, 219 p. (in Hungarian)

Kerényi, A., Martonné, E. K. 1994. Soil Exercises. KLTE, Debrecen, 90 p. (in Hungarian)

Kidane, M., Bezie, A., Kesete, N., Tolessa, T. 2019. The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon 5, e02981 Issue 12, DOI: 10.1016/j.heliyon.2019.e02981

Kim, J., Choi, J., Choi, C., Park S. 2013. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of The Total Environment 452–453C, 181–195. DOI: 10.1016/j.scitotenv.2013.02.005

Kocsis, K. (Editor-in-Chief) 2018. National Atlas of Hungary. Natural Environment. Hungarian Academy of Sciences, Research Centre for Astronomy and Earth Sciences, Geographical Institute, Budapest.

Kopittke, P.M., Menzies, N.W., Wang, P., McKenna, B.A., Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environment International 132, Article 105078. DOI: 10.1016/j.envint.2019.105078

Kosmas, C., Danalatos, N., Cammeraat, L.H., Chabart, M., Diamantopoulos, J., Farand, R., Gutiérrez, L., Jacob, A., Marques, H., Martínez-Fernández, J., Mizara, A., Moutakas, N., Nicolau, J.M., Oliveros, C., Pinna, G., Puddu, R., Puigdefábregas, J., Roxo, M., Simao, A., Stamou, G., Tomasi, N., Usai, D., Vacca A. 1997. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29(1), 45–59. DOI: 10.1016/S0341-8162(96)00062-8

Kosmas, C., Gerontidis, S., Marathianou, M. 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena 40(1), 51–68. DOI: 10.1016/S0341-8162(99)00064-8

Marathianou, M., Kosmas, C., Gerontidis, S., Detsis, V. 2000. Land-use evolution and degradation in Lesvos (Greece): a historical approach. Land Degradation & Development 11(1), 63–73. DOI: 10.1002/(SICI)1099-145X(200001/02)11:1<63::AID-LDR369>3.0.CO;2-8

Michéli, E., Fuchs, M., Hegymegi, P. Stefanovits, P. 2006. Classification of the Major Soils of Hungary and their Correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és Talajtan 55 (1), 19–28. DOI: 10.1556/agrokem.55.2006.1.3

Murányi, A., Rajkai, K., Stefanovits, P., Szűcs, L., Várallyay, Gy., Zilahy., P. 1989. Soil map. In: Pécsi, M. (main ed.): National Atlas of Hungary. The Geographical Research Institute of the Hungarian Academy of Sciences, Budapest, 78–79.

Novák, T. J. 2013. Soil Practicality. Field study and classification of soils. Meridián Alapítvány, Debrecen, 188 p. (in Hungarian)

Pásztor, L., Dobos, E., Michéli, E., Várallyay, Gy. 2018. Soils. In: Kocsis, K. (Editor-in-Chief): National Atlas of Hungary – Natural environment. Hungarian Academy of Sciences, Research Centre for Astroomy and Earth Sciences, geographical Institute, Budapest, 82–93.

Pelacani, S., Maerker, M., Rodolfi, G. 2008. Simulation of soil erosion and deposition in a changing land use: A modelling approach to implement the support practice factor. Geomorphology 99(1), 329–340., DOI: 10.1016/j.geomorph.2007.11.010

Pelikán P. 2005. Geology of the Bükk Mountains. Explanatory book of the Geological Map of the Bükk Mountains (1:50 000). Magyar Állami földtani Intézet, Budapest. 284 p.

Pinczés, Z., Martonné Erdős, K., Dobos, A, 1993. Differences and similarities in developing of foothill areas during the Pleistocene period. Földrajzi Közlemények 3, 149–162. (in Hungarian)

Sartori. M., Philippidis, G., Ferrari, E., Borrelli, P., Lugato, E., Montanarella, L., Panagos P. 2019. A linkage between the biophysical and the economic: Assessing the global market impacts of soil erosion. Land Use Policy 86, DOI: 10.1016/j.landusepol.2019.05.014

Shuttle Radar Topography Mission (SRTM) Global, Dataset Citation: NASA Shuttle Radar Topography Mission (SRTM) 2013. Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography. https://doi.org/10.5069/G9445JDF. Accessed: 2023-05-05

Sonderegger, T., Pfister S. 2021. Global Assessment of Agricultural Productivity Losses from Soil Compaction and Water Erosion. Environmental Science & Technology 55(18), 12162–12171. DOI: 10.1021/acs.est.1c03774

Stefanovits, P. 1963. The Soils of Hungary. (Magyarország talajai), Akadémiai Kiadó, 2nd edition., Budapest. 442. p. (in Hungarian)

Stefanovits, P. 1981. Soil Science. Mezőgazdasági Kiadó, Budapest, 379 p. (in Hungarian)

Szabolcs, I. (ed.) 1966. OMMI Genetikus Talajtérképek (OMMI Genetic Soil Maps). Ser. 1. No. 9. OMMI, Budapest. (in Hungarian)

Székely, A. 1997. Landforms of Volcanoes. (Vulkánmorfológia). ELTE Eötvös Kiadó, Budapest, 234. p. (in Hungarian)

Szendrei, G. 1998. Soil Science. (Talajtan.) ELTE Eötvös Kiadó, Budapest. 300 p. (in Hungarian)

Thornes, J.B. 1990. The interaction of erosional and vegetational dynamics in land degradation: spatial outcomes. In: Thornes, J.B. (ed.), Vegetation and Erosion. Processes and Environments, J. Wiley, Chichester. West Sussex, England; New York, NY, USA, 41–53.

Van Rompaey, A.J.J., Govers, G., Van Hecke, E., Jacobs, K. 2001. The impacts of land use policy on the soil erosion risk: A case study in central Belgium. Agriculture Ecosystems & Environment 1-2, 83–94. DOI: 10.1016/S0167-8809(00)00173-0

Van Rompaey, A., Govers, G., Puttemans, C. 2002. Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth surface processes and landforms 27(5), 481–494. DOI: 10.1002/esp.335

Vanacker, V., Ameijeiras-Mariño, Y., Schoonejans, J., Cornélis, J., Minella, J.P.G., Lamouline, F., Vermeire, M., Campforts, B., Robinet, J., Van de Broek, M., Delmelle, P., Opfergelt, S. 2019. Land use impacts on soil erosion and rejuvenation in Southern Brazil, Catena 178, 256–266. DOI: 10.1016/j.catena.2019.03.024

Várallyay, Gy., Fórizs, J.-né 1966. Soil descripition on site. In: Szabolcs, I. (szerk.): A genetikus üzemi talajtérképezés módszerkönyve, Országos Mezőgazdasági Minőségvizsgáló Intézet, Budapest, 19–160. (in Hungarian)

Yang, D.W., Kanae, S., Oki, T., Koike, T., Musiake K. 2003. Global potential soil erosion with reference to land use and climate changes. Hydrological Processes 17(14), 2913–2928. DOI: 10.1002/hyp.1441

Zoakib, S., Naser B. 2011. Impacts of land uses on runoff and soil erosion. A case study in Hilkot watershed Pakistan. International Journal of Sediment Research, 26(3), 343-352, ISSN 1001-6279, DOI: 10.1016/S1001-6279(11)60098-X