Global warming induced changes in the means and extremities of temperature and precipitation in Hungary

Main Article Content

János Mike
Mónika Lakatos

Abstract

Regional climate changes are still one of the most difficult problems of the climate change issue. Results by three scientific approaches, the raw General Circulation Models (GCM), the mesoscale models, compiled from the PRUDENCE project, and an empirical method, called Natural experiment are compared. The latter approach provides estimations of the future changes based on regression coefficients between the local and global variables in the monotonously warming 1976-2007 period. The global model results comprise results of 9 AOGCMs, whereas in the PRUDENCE set of 5 model outputs are analysed. The listed results start with changes in the seasonal temperature and precipitation averages. Here the signs and the magnitudes are similar according to all approaches: Faster than global mean temperature increases in all seasons, with strongly decreasing precipitation in summer and autumn but increased amounts in winter and spring. There is also a fair agreement of the three approaches in the temperature extremes of the warm half-year in Hungary, with much less unequivocal picture in the frequency of frozen days in the cold half of the year. For precipitation, again, the summer maxima of diurnal totals behave similarly according to the three approaches in all regions of the country. Namely, they exhibit unequivocal increase, whereas no clear picture is seen for frequency of wet/dry days.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mike, János, and Mónika Lakatos. 2009. “Global Warming Induced Changes in the Means and Extremities of Temperature and Precipitation in Hungary”. Journal of Environmental Geography 2 (3-4):49-55. https://doi.org/10.14232/jengeo-2009-43868.
Section
Articles

References

Bartholy J. – Pongrácz R. – Gelybó Gy. – Szabó P. 2008: Analysis of expected climate change in the Carpathian Basin using the PRUDENCE results. Időjárás 112(3-4): 249-264

Christensen J. H. – Carter T. R. – Rummukainen M. – Amanatidis G. 2007 Predicting of regional scenarios and uncertainties for defining European climate change risks and effects: The PRUDENCE Project. Climatic Change 81: Supplement 1, May 2007, 371 p

Christensen J. H. – Christensen O. B. 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change 81: 7-30

Csima G. – Horányi A. 2008. Validation of the ALADINClimate regional climate model at the Hungarian Meteorological Service. Időjárás 112(3-4): 155-177

Delworth T. L. – Stouffer R. – Dixon R. – Spelman M. J. – Knutson Th. R. – Broccoli A. J. – Kushner P. J. – Wetherald R. T. 2002. Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dynamics 19: 555-574

Diansky N. A. – Volodin E. M. 2002. Simulation of presentday climate with a coupled atmosphere-ocean general circulation model. Izvestiya 38: 732-747

Dixon K. W. – Delworth T. – Knutson T. – Spelman M. – Stouffer R. 2003. A comparison of climate change simulations produced by two GFDL coupled climate models. Global and Planetary Change 37: 81-102

Frich P. – Alexander L. V. – Della-Marta P. – Gleason B. – Haylock M. – Klein A. M. G. – Peterson T. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research 19: 193-212

Hasumi H. – Emori S. 2004. K-1 Coupled GCM (MIROC) Description. K-1 Technical Report No 1, 39 pp. (http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf)

Solomon S. – Qin D. – Manning M. – Chen Z. – Marquis M. – Averyt K. B. – Tignor M. – Miller H. L. (eds.) 2007. Climate Change 2007: The Physical Science Basis. Contribution of WG-I to the Fourth Assessment Report of the IPCC. Cambridge, New York: Cambridge University Press. 996 p.

Meehl G. A. – Stocker T. F. – Collins W. D. – Friedlingstein P. – Gaye A. T. – Gregory J. M. – Kitoh A. – Knutti R. – Murphy J. M. – Noda A. – Raper S. C. B. – Watterson I. G. – Weaver A. J. – Zhao Z. C. 2007. Global Climate Projections. In: Solomon S. – Qin D. – Manning M. – Chen Z. – Marquis M. – Averyt K. B. – Tignor M. – Miller H. L. (eds.) IPCC Climate Change 2007: The Physical Science Basis. Contribution of Working Group I. to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, New York: Cambridge University Press, pp. 747-845

Mika J. 1988. Regional features of global warming in Hungary. Időjárás 92: 178-189

Mika J. 1991. Expected regional features of larger global warming in Hungary Időjárás 95: 265-278

Mika J. 2006. Global warming, regional features in Hungary. In: Fekete G. – Varga Z. (eds.) Fauna and flora of the landscapes in Hungary. HAS Society Center, Budapest, pp. 397-408

Nakicenovic N. – Swart R. (eds.) 2000. Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change IPCC. Special Report on Emissions Scenarios. Cambridge, New York: Cambridge University Press, 612 p.

Szentimrey T. 1999. Multiple Analysis of Series for Homogenization (MASH). Proceedings of the Second Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary. WMO, WCDMP-No. 41, pp. 27-46

Szentimrey T. 2006. Manual of homogenization software MASHv3.01

Szépszó G. 2008. Regional change of climate extremes over Hungary based on different regional climate models of the PRUDENCE project. Időjárás 112(3-4): 265-284

Szépszó G. – Horányi A. 2008. Transient simulation of the REMO regional climate model and its evaluation over Hungary. Időjárás 112(3-4): 203-231

Tebaldi C. – Hayhoe K. – Arblaster J. M. – Meehl G. A. 2006. Going to the extremes: An intercomparison of modelsimulated historical and future changes in extreme events. Climate Change 79: 185-211

Torma Cs. – Bartholy J. – Pongrácz R. – Barcza Z. – Coppola E. – Giorgi F. 2008. Adaptation of the RegCM3 climate model for the Carpathian Basin. Időjárás 112(3-4): 233-247

Washington W. – Weatherly M. – Meehl J. W. – Semtner G. A. – Bettge A. J. – Craig T. W. – Strand A. P. – Arblaster W.G. – Wayland J. M. – James V. B. – Zhang Y. 2000. Parallel climate model (PCM) control and transient simulations. Climate Dynamics 16: 755-774

Yukimoto S. – Noda A. – Kitoh A. – Sugi M. – Kitamura Y. – Hosaka M. – Shibata K. – Maeda S. H. – Uchiyama T. 2001. The New Meteorological Research Institute Coupled GCM (MRI-CGCM2). Model Climate and Variability. Papers in Meteorology and Geophysics 51(2): 47-88