Development Of An Integrated ANN-GIS Framework For Inland Excess Water Monitoring
Main Article Content
Abstract
Inland excess water on the Great Hungarian plain is an environmental and economic problem that has attracted a lot of scientific attention. Most studies have tried to identify the phenomena that cause inland excess water and combined them using regression functions or other linear statistical analysis. In this article, a different approach using a combination of artificial neural networks (ANN) and geographic information systems (GIS) is proposed. ANNs are particularly suitable for classifying large complex non-linear data sets, while GIS has very strong capabilities for geographic analysis. An integrated framework has been developed at our department that can be used to process inland excess water related data sets and use them for training and simulation with different types of ANNs. At the moment the framework is used with a very high resolution LIDAR digital elevation model, colour infrared digital aerial photographs and in-situ fieldwork measurements. The results of the simulations show that the framework is operational and capable of identifying inland excess water inundations.
Downloads
Article Details
x
Funding data
-
Nemzetgazdasági Minisztérium
Grant numbers GOP - 1.1.1 - 08 / 1 -2008 – 0025
References
Barsi Á. 1997. Landsat-felvétel tematikus osztályozása neurális hálózattal. Geodézia és Kartográfia 49/4: 21-28
Bozán Cs. – Pálfai I. – Pásztor L. – Kozák P. – Körösparti J. 2005. Mapping of Inland excess water Hazard in Békés and Csongrád Counties of Hungary. ICID 21st European Regional Conference 2005 – 15-19 May 2005. Frankfurt (Oder) and Slubice – Germany and Poland
Coleman A. M. 2008. An adaptive Landscape classification procedure using geoinformatics and artificial neural networks. Unpublished MSc thesis, Amsterdam. 195 p
Demuth H. – Beale M. – Hagan M. 2010. Neural Network Toolbox 6, User’s Guide. The Mathworks 901 p
Hewitson B.C. – Crane R.G. 1994. Neural Nets: Applications in Geography. Dordrecht: Kluwer Academic Publishers. 194 p
Jafar R. – Shahrour I. – Juran I. 2010. Application of Artificial Neural Networks (ANN) to model the failure of urban water mains. Mathematical and Computer Modelling 51: 1170-1180
Marosi S. – Sárfalvi B. 1990. Magyarország kistájainak katasztere I. Budapest: MTA FKI. 1023 p
Pásztor L. – Pálfai I. – Bozán Cs. – Kőrösparti J. – Szabó J. – Bakacsi Zs. – Kuti L. 2006. Spatial stochastic modelling of inland inundation hazard. 9th AGILE Conference on Geographic Information Science. Visegrád, Hungary
Pradhan B. – Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental, Modelling & Software 25: 747-759
Rakonczai J. – Mucsi L. – Szatmári J. – Kovács F. – Csató Sz. 2001. A belvizes területek elhatárolásának módszertani lehetőségei. I. Földrajzi Konferencia, Szeged
Rakonczai J. – Csató Sz. – Mucsi L. – Kovács F. – Szatmári J. 2003. Az 1999. és 2000. évi alföldi belvíz-elöntések kiértékelésének gyakorlati tapasztalatai. Vízügyi Közlemények 1998-2001. évi árvízi külön füzetek Vol. 4: 317-336
Retter, Gy. 2006. Fuzzy, Neurális Genetikus, Kaotikus Rendszerek. Budapest: Akadémiai Kiadó. 425 p
Sárközy F. 1998. Mesterséges neurális hálózatok mint GIS függvények. Geomatikai Közlemények 1: 109-130
Tarboton D. G. – Bras R. L. – Rodriguez–Iturbe I. 1991. On the Extraction of Channel Networks from Digital Elevation Data. Hydrological Processes 5: 81-100
Tobak Z. – Kitka G. – Szatmári J. – van Leeuwen B. – Mucsi L. 2008. Kisgépes, Kisformátumú (SFAP) CIR légifelvételek készítése, feldolgozása és alkalmazása környezeti vizsgálatokban. IV. Magyar Földrajzi Konferencia, Debrecen
Zurada J. M. 1992. Introduction to Artificial Neural Systems. New York: West Publishing Company. 683 p