A Spatiotemporal Stochastic Framework Of Groundwater Fluctuation Analysis On The South Eastern Part Of The Great Hungarian Plain

Main Article Content

Zsolt Zoltán Fehér

Abstract

The current study was performed on a Hungarian area where the groundwater has been highly affected in the past 40 years by climate change. The stochastic estimation framework of groundwater as a spatiotemporally varying dynamic phenomenon is proposed. The probabilistic estimation of the water depth is performed as a joint realization of spatially correlated hydrographs, where parametric temporal trend models are fitted to the measured time series thereafter regionalized in space. Two types of trend models are evaluated. Due to its simplicity the purely mathematical trend can be used to analyze long-term groundwater trends, the average water fluctuation range and to determine the most probable date of peak groundwater level. The one which takes advantage of the knowledge of expected groundwater changes, clearly over performed the purely mathematical model, and it is selected for the construction of a spatiotemporal trend. Model fitting error values are considered as a set of stochastic time series which expresses short-term anomalies of the groundwater, and they are modelled as joint space-time distribution. The resulting spatiotemporal residual field is added to the trend field, thus resulting 125 simulated realizations, which are evaluated probabilistically. The high number of joint spatiotemporal realizations provides alternative groundwater datasets as boundary conditions for a wide variety of environmental models, while the presented procedure behaves more robust over non-complete datasets.

Downloads

Download data is not yet available.

Article Details

How to Cite
Fehér, Zsolt Zoltán. 2015. “A Spatiotemporal Stochastic Framework Of Groundwater Fluctuation Analysis On The South: Eastern Part Of The Great Hungarian Plain”. Journal of Environmental Geography 8 (3-4):41-52. https://doi.org/10.1515/jengeo-2015-0011.
Section
Articles

References

Aboufassi, M., Marino M. 1983. Kriging of water levels in the Souss aquifer, Morocco, Mathematical Geology 15 (4), 537–551.

Armstrong, M., Chetboun, G., Hubert, P. 1993. Kriging the rainfall in Lesotho. In: Soares A., (ed.) Geostatistics Troia ‘92, (2) Kluwer, Dordrecht, 661–672.

Bezdán, M. 2011. A szabályozott Tisza vízjárása tulajdonságai a Tiszafüred alatti folyószakaszokon. PhD dissertation, University of Szeged.

Bogaert, P. and Christakos, G. 1997. Spatiotemporal analysis and processing of thermometric data over Belgium. Journal of Geophisical Research. 102, 25831–25846. DOI: 10.1029/97jd01809

Carroll, R., Chen, R., George, E., Li, T., Newton, H., Schmiediche, H., Wang, N. 1997. Ozone exposure and population density in Harris county, Texas (with discussion). Journal of the American Statistical Association 92, (438) 392–415. DOI: 10.2307/2965684

Chatfield, C. 1996. The analysis of Time Series. An introduction, 5th edition. Chapman & Hall, London

Christakos, G., Hristopulos, D. 1998. Spatiotemporal environmental health modelling. A tractatus stochasticus, Kluwer10.1007/978-1-4757-2811-8

Christakos, G. Lai, J., 1997. A study of breast cancer dynamics in North Carolina. Social Science & Medicine 45(10), 1503–1517. DOI: 10.1016/s0277-9536(97)00080-4

De Iaco, S., Palma, M., Posa, D. 2015. Spatio-temporal geostatistical modeling for French fertility predictions. Spatial Statistics. In press.10.1016/j.spasta.2015.10.002

Delhomme J. 1978. Kriging in the hydrosciences. Advances in Water Resources 1(5), 251–266. DOI: 10.1016/0309-1708(78)90039-8

Desbarats, A., Logan, C., Hinton, M., Sharpe, D. 2002. On the kriging of water table elevations using collateral information from a digital elevation model. Journal of Hydrology 255, 25–38. DOI: 10.1016/s0022-1694(01)00504-2

Deutsch C., Journel, A. 1998. GSLIB. Geostatistical Software Library and User’s Guide, 2nd edition, Oxford University Press, New York.

Dimitrakopoulos, R., Luo, X. 1997. Joint Space-Time modelling in the presence of trends. In Baaffi, E. and Schofield, N. (eds.) Geostatistics Wollongong ‘96, 1. Kluwer, 138-149.

Dunlap, L., Spinazola, J. 1984. Interpolating water table altitudes in west-central Kansas using kriging techniques, USGS Water-Supply paper 2238.

Fehér, Z. 2015. Talajvízkészletek változásának geostatisztikai alapú elemzése – a rendelkezésre álló információk természete és feldolgozása. Hidrológiai Közlöny 95 (2), 15–31.

Fehér, Z., Rakonczai, J. 2012. Reliability enhancement of groundwater estimations. In: Malvic T. (eds.) Geomathematics as geoscience. Opatija.

Geiger, J. 2007. Folyóvízi övzátony testek mikro és makrolétékű 3D szedimentológiai modellezése. Research Report, Hungarian Oil and Gas Company, Budapest.

Geiger, J. 2015. Some Applications of Markov-type Sequential Gaussian Co-simulations. In: Horváth, J. (eds.). Conference book of the 7th HR-HU and 18th HU Geomathematical Congress 59-66. Mórahalom

Goovaerts, P., Sonnet, P. 1993, Study of spatial and temporal variations of hydrogeochemical variables using factorial kriging analysis, in A. Soares, ed. Geostatistics Troia ‘92, Vol. 2. Kluwer, 745–756.

Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press, New York

Goovaerts, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, Journal of Hydrology 228, 113–129. DOI: 10.1016/s0022-1694(00)00144-x

Gotway, C., Stroup W. 1997. A Generalized Linear Model Approach to Spatial Data Analysis and Prediction, Journal of Agricultural, Biological, and Environmental Statistics 2 (2), 157–178. DOI: 10.2307/1400401

Handcock, M., Wallis, J. 1994. An approach to statistical spatial-temporal modeling of meteorological fields (with discussion). Journal of the American Statistical Association 89 (426), 368–390. DOI: /10.2307/229083210.1080/01621459.1994.10476754

Heuvelink, G., Musters, P., Pebesma, E. 1997. Spatio-temporal kriging of soil water content. In: Baaffi, E., Schofield, N. (eds.) Geostatistics Wollongong ‘96, Vol. 2. 1020–1030.

Hoeksema, R., Clapp, R., Thomas, A., Hunley A., Farrow N., Dearstone, K. 1989. Cokriging model for estimation of water table elevation. Water Resources Research 25 (3), 429–438. DOI: 10.1029/wr025i003p00429

Hohn, M., Liebhold, A., Gribko, L. 1993. Geostatistical model for forecasting spatial dynamics of defoliation caused by the gypsy moth (Lepidoptera. Lymantriidae). Environmental Entomology 22 (5), 1066–1075. DOI: 10.1093/ee/22.5.1066

Hottovy, S., Stechmann, S. 2015. A Spatiotemporal Stochastic Model for Tropical Precipitation and Water Vapor Dynamics, Journal of the Atmospheric Sciences 72, 4721–4738. DOI: 10.1175/jas-d-15-0119.1

IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 p.

Journel, A. 1989. Fundamentals of Geostatistics in Five Lessons. Short Course in Geology 8. AGU, Wasington, DC.10.1029/SC008

Kohán, B. 2014. GIS - alapú vizsgálat a Duna–Tisza közi homokhátság szárazodásának témakörében. PhD dissertation, ELTE, Budapest.

Kovács, F., Turai, E. 2004. Csapadék és talajvízszint értékek spektrális elemzése a Ludas-I területen. Bányászat 66, 23–33.

Kovács, J., Szabó, P., Szalai, J. 2004. Analysis of groundwater time series on the Danube-Tisza Interflow, Vízügyi Közlemények 86 (3–4), 607–624.

Kovács, J., Kiszely, P., Szalai, J. 2011. Periódusos jelenségek a Tiszántúl alacsonyabb tengerszint feletti magasságú területein létesített talajvízszint- észlelő kutak mérési adatsoraiban. In: Szlávik L. (eds.) Magyar Hidrológiai Társaság XXIX. Országos Vándorgyűlése, 2011, Eger, Hungary.

Kyriakidis, P., Journel, A. 1999. Geostatistical space-time models – a review. Mathematical Geology 31(6) 651–684. DOI: 10.1023/a:1007528426688

Kyriakidis, P., Journel, A. 2001a. Stochastic modelling of atmospheric pollution: a spatial time-series framework. Part I.. methodology, Atmospheric Environment 35, 2331–2337. DOI: 10.1016/s1352-2310(00)00541-0

Kyriakidis, P. Journel, A. 2001b. Stochastic modelling of atmospheric pollution: a spatial time-series framework. Part II.. application to monitoring monthly sulfate deposition over Europe, Atmospheric Environment 35, 2339–2348. DOI: 10.1016/s1352-2310(00)00540-9

Kyriakidis, P., Miller, N., Kim, J. 2004. A spatial time series framework for simulating daily precipitation at regional scales. Journal of Hydrology 297, 236–255. DOI: 10.1016/j.jhydrol.2004.04.022

Malvić T., Zelenika, K. 2014. Why we use Simpson and trapezoidal rule for hydrocarbon reservoir volume calculation? In. Cvatkovic M. (eds.) Geomathematics – from theory to practice. Croatian Geological Society, Opatija, 2014, 37–45.

Mardia, K., Goodall, C. 1993, Spatial-temporal analysis of multivariate environmental data. In Patil, G., Rao, C. (eds.) Multivariate environmental statistics. Elsevier, Amsterdam, 347–386.

Mateu J., Ignaccolo, R. 2015. Spatio-temporal stochastic modelling of environmental hazards. Spatial Statistics, In press.10.1016/j.spasta.2015.09.001

Mucsi, L., Geiger, J., Malvic, T. 2013. The Advantages of Using Sequential Stochastic Simulations when Mapping Small-Scale Heterogeneities of the Groundwater Level. Journal of Environmental Geography 6 (3–4), 39–47. DOI: 10.2478/jengeo-2013-0005

Négyesi, G. 2006. Karcag talajvízszintjének időbeli változása. In: Demeter, G., Négyesi, G. (eds.) Földrajzi tanulmányok dr. Lóki József tiszteletére, DE Kossuth Egyetemi Kiadó, Debrecen, 156–170.

Neuman, S. Jacobsen E. 1984. Analysis of non-intrinsic spatial variability by residual kriging with application to regional groundwater levels. Mathematical Geology 16 (5), 499–521. DOI: 10.1007/bf01886329

Pálfai, I. (ed.) 1994. A Duna–Tisza közi hátság vízgazdálkodási problémái. A Nagyalföld Alapítvány Kötetei 3. Békéscsaba, 126 p.

Papritz, A., Flühler, H. 1994. Temporal change of spatially autocorrelated soil properties. Optimal estimation by cokriging. Geoderma 62, 29–43. DOI: 10.1016/0016-7061(94)90026-4

Rakonczai, J. 2014. A klímaváltozás következményei a dél-alföldi tájon: A természeti földrajz változó szerepe és lehetőségei, Academic Dissertation.

Rakonczai, J., Bódis, K. 2002. A környezeti változások következményei az Alföld felszín alatti vízkészleteiben. In: Mészáros, R., Schweizer, F., Tóth, J. (eds.) Jakucs László, a tudós, az ismeretterjesztő és a művész, 227–232.

Rakonczai, J. Fehér, Z. 2015. A klímaváltozás szerepe az Alföld talajvízkészleteinek időbeli változásaiban. Hidrológiai Közlöny 85 (1), 1–15.

Rétháti, L. 1977a. Hiányos talajvíz-idősorok kiegészítése. In. Hidrológiai Közlöny 47(4), 153–162.

Rétháti, L. 1977b. A talajvíz-idősorok autókorrelációs vizsgálata. In. Műszaki tudomány 3–4.

Rónai, A. 1985. Az Alföld negyedidőszaki földtana. Geologica Hungarica, Series Geologica 21, 445 p.

Searle, S. 1971. Linear models, Wiely, New York

Singh, N., Gokhale, S. 2015 A method to estimate spatiotemporal air quality in an urban traffic corridor. Science of The Total Environment 538, 458-467. DOI: 10.1016/j.scitotenv.2015.08.065

Sümeghy, B. 2015. A Maros hordalékkúp fejlődéstörténeti rekonstrukciója. PhD dissertation, University of Szeged.

Szalai, J., Nagy, J., Will, Z. 2012. A Duna-Tisza köze talajvízjárásának alakulása az elmúlt évek hidrometeorológiai eseményeinek tükrében. In: MHT XXX. Országos Vándorgyűlés dolgozatai.

Treidel, H., Martin-Bordes, J., Gurdak, J. 2012. Climate Change Effects on Groundwater Resources - A Global Synthesis of Findings and Recommendations. CRC Press/Balkema, Leiden, Netherlands 10.1201/b11611

Ubell, K. 1954. A talajvízszint alakulás törvényszerűségei. Mérnöki Továbbképző Intézet. Budapest

Wardlow, B., Anderson, T., Tadesse, C., Hain, W., Rodell, M. (2016), Remote Sensing of Drought: Emergence of a Satellite-Based Monitoring Toolkit for the United States. In: Thenkabail, P. (eds.) Remote Sensing of Water Resources, Disasters, and Urban Studies 367-398.

Xianlin, M., Journel, A. 1999. An expanded GSLIB Cokriging Program Allowing for two Markov Models, Computers and Geosciences 25 (6), 627–639. DOI: 10.1016/s0098-3004(99)00009-6

Xu, W., Tran, T., Srivastava, R., Journel, A. 1992. Integrating seismic data into reservoir modelling. the colocated cokriging alternative, SPE paper no. 24742, The Society of Petroleum Engineers, Richardson.10.2118/24742-MS