Estimation of Soil Material Transportation by Wind Based on in Situ Wind Tunnel Experiments

Main Article Content

Andrea Farsang
Rainer Duttmann
Máté Bartus
József Szatmári
Károly Barta
Gábor Bozsó

Abstract

25% and 40% of territory of Hungary is moderate to highly vulnerable to deflation. However, precise estimates about the soil loss and related losses of organic matter and nutrients due to wind erosion are missing in most cases. In order to determine magnitudes of nutrient masses removed at wind velocities that frequently occur in SE Hungary, in-situ experiments using a portable wind tunnel have been conducted on small test plots with an erosional length of 5.6 m and a width of 0.65 m. The wind tunnel experiments have been carried through on a Chernozem which is typical for this region. In order to compare the effects of soil coverage on the masses of blown soil sediment and adsorbed nutrients, two soil surface types have been tested under similar soil moisture und atmospheric conditions: (1) bare soil (dead fallow) and (2) bare soil surface interrupted by a row of maize plants directed downwind along the center line of the test plots. The results of our experiments clearly show that a constant wind velocity of 15 m s-1 (at a height of 0.3 m) lasting over a short time period of 10 minutes can already cause noticeable changes in the composition and size of soil aggregates at the top of the soil surface. Due to the grain size selectivity of the erosive forces the relative share of soil aggregates comprising diameters > 1 mm increased by 5-10% compared with the unaffected soil. Moreover it has shown that short time wind erosion events as simulated in this study can result in erosion rates between 100 and 120 g m-2, where the erosion rates measured for bare soils are only slightly, but not significantly higher than those of the loosely vegetated ones. Soil samples taken from sediment traps mounted in different heights close to the outlet of the wind tunnel point to an enrichment of organic matter (OM) of about 0.6 to 1 % by mass referred to the control samples. From these findings has been calculated that the relocation of organic matter within short term wind erosion events can amount to 4.5 to 5.0 g OM m-2. With the help of portable field wind tunnel experiments we can conclude that our valuable, high quality chernozems are struck by wind erosion mainly in drought periods.

Downloads

Download data is not yet available.

Article Details

How to Cite
Farsang, Andrea, Rainer Duttmann, Máté Bartus, József Szatmári, Károly Barta, and Gábor Bozsó. 2013. “Estimation of Soil Material Transportation by Wind Based on in Situ Wind Tunnel Experiments”. Journal of Environmental Geography 6 (3-4):13-20. https://doi.org/10.2478/jengeo-2013-0002.
Section
Articles

Funding data

References

Bach, M. 2008. Aolische Stofftransporte in Agrarlandschaftem. PhD Dissertation. Christian-Albrechts Universitat, Kiel.

Baukó, T., Beregszászi, P. 1990. Egyszerűsödő agrár-térszerkezet - fokozódó szélkárosodás Békés megyében (Simplifying spatial struture of agricultural lands - increasing wind erosion in Békés county). Környezetgazdálkodási Évkönyv 1989. Békéscsaba, 87-95.

Bielders, C.L., Rajot, J.L., Amadou, M., 2002. Transport of soil and nutrients by wind in bush fallow land and traditionally managed cultivated fields in the Sahel. Geoderma 109, 19-39.

Bódis, K., Szatmári, J. 1998. Eolikus geomorfológiai vizsgálatok DDM felhasználásával (Eolic geomorphological investigations using DEM). In: VII. Térinformatika a felsőoktatásban szimpózium. Budapest, 102-107.

Bodolay, I.-né, 1966. A széleróziót befolyásoló változó talajfizikai tulajdonságok (Physical properities influencing wind erosion). Agrokémia és Talajtan, 15, 372-383.

Bodolay, I.-Né, Máté, F., Szűcs, L. 1976. A szélerózió hatása a Bácskai löszháton (Effect of wind erosion on Bácsa Loess Plateau). Agrokémiaés Talajtan 25, 96-103.

Bolte, K. 2008. Untersuchungen zur feuchteabhangigen Dynaik des bodespezifischen Erosionwiderstandes bei Bewindung unter Windkanalbedingungen Schriftenreihe des Institut für Pflanzenernahrung und Bodenkunde Universitat Kiel. 146 p.

Borsy, Z. 1972. A szélerózió vizsgálata a magyarországi futóhomok területeken (Investigation of wind erosion on sandland areas of Hungary). Földrajzi Közlemények 20 (2-3), 156-160.

Chepil, W.S. 1942. Relation of wind erosion to the water-stable and dry clod structure of soil. Soil Science 55, 275-287.

Chepil, W.S. 1955. Factors that influence clod structure and erodibility of soil by wind: V. Organic matter at various stages of decomposition. Soil Science 80 (5), 413-421.

Chepil, W.S., N.P. Woodruff 1963. The Physics of Wind Erosion and Its Control. Advances in Agronomy 15, New York: Academic Press Inc., 302 pp.

Dövényi, Z. (ed.), 2010. Magyarország kistájainak katasztere (Microregion cathaster of Hungary). MTA FKI, Budapest, 285-289.

Farsang, A., Szatmári, J., Négyesi, G., Bartus, M., Barta, K., 2011. Csernozjom talajok szélerózió okozta tápanyagáthalmozódásának becslése szélcsatorna-kísérletekkel (Estimation of soil organic matter transportation due to wind erosion in case of chernozem soils). Agrokémia és Talajtan 60 (1), 87-102.

Fister, W., Ries, J.B. 2009. Wind erosion in the central Ebro Basin under changing land use management. Field experiments with a portable wind tunnel. Journal of Arid Environments 73 (11), 996-1004.

Gillette, D. 1978. A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production. Atmospheric Environment 12 (8), 1735-1743.

Harkányiné Székely, Zs., Herkó, D. 1989. Magyarország homokveréses kártérképe (1977-1986) (Damages due to sand blast in Hungary (1997-1986). I. M=1:100 000. ICA Nemzetközi Térképészeti Társulás XIV. Világkonferenciája Budapest

Larney, F.J. et al. 1998. Wind erosion effects on nutrient redistribution and soil productivity. Journal of Soil and Water Conservation 53 (2), 133-140.

Lóki, J. 2003. A szélerózió mechanizmusa és magyarországi hatásai. (The process of wind erosion and its effects in Hungary). MTA doktori értekezés. Debrecen.

Lóki, J., Schweizer, F. 2001. Fiatal futóhomokmozgások kormeghatározási kérdései- Duna-Tisza közi régészeti feltárások tükrében. Acta Geographica Geologica et Meteorologica Debrecina. XXXV, 175-183.

Maurer, T., Herrmann, L., Gaiser, T., Mounkaila, M., Stahr, K., 2006. A mobile wind tunnel for wind erosion field measurements. Journalof Arid Environments 66 (2) 257-271.

Mezősi, G., Szatmári, J. 1998. Assessment of wind erosion risk on the agricultural area of the southern part of Hungary. Journ. Hazardous Materials 61, 139-153.

Mucsi, L., Szatmári, J., 1998. Landscape changes of a blown sand surface on the Great Hungarian Plain. The problems of landscape ecology. III. Warsaw, 215-222.

Neemann, W. 1991. Bestimmung des Bodenerodierbarkeitsfaktors für winderosionsgefahrdete Böden Norddeutschlands - Ein Beitrag zur Quantifizierung der Bodenverluste. Geologisches Jahrbuch 25,. Hannover.

Sankey, J.B., Germino M.J., Benner S.G., Glenn N.F., Hoover A.N. 2012. Transport of biologically important nutrients by wind in an eroding cold desert. Aeolian Research 7, 17-27.

Sterk G., Herrmann L., Bationo A. 1996. Wind-blow nutrient transport and soil productivity changes in southwest Niger. Landdegradation and Development, 7, 325-335

Szatmári, J. 1997. Evaluation of wind erosion risk on the SE part of Hungary. Acta Geographica Szegediensis. XXXVI, 121-135.

Szatmári, J. 2005. The evaluation of wind erosion hazard for the area of the Danube-Tisza Interfluve using the revised wind erosion equation. Acta Geographica Szegediensis. XXXVIII, 84-93.

Várallyay Gy., Szűcs L., Murányi A., Rajkai, K., Zilahy, P. 1979. Magyarország termőhelyi adottságait meghatározó talajtani tényezők 1:100 000 méretarányú térképe I (Map of pedological factors determining the site conditions in Hungary I). Agrokémiaés Talajtan 28, 363-384.

Várallyay, Gy., Szűcs, L., Murányi, A., Rajkai, K., Zilahy, P., 1980. Magyarország termőhelyi adottságait meghatározó talajtani tényezők 1:100 000 méretarányú térképe II. (Map of pedological factors determining the site conditions in Hungary II). Agrokémiaés Talajtan 29. 35-76.

Woodruff, N.P., Siddoway, F.H. 1965. A wind erosion equation. Soi. Sci. Soc. Am. Proc. 29, 602-608.

Zobeck, T., Fryrear, D.W. 1986. Chemical and physical characteristics of windblown sediment. Transaction of the ASAE 29, 1037-1041.

Zobeck, T., Fryrear, D.W., Petit, R. D., 1989. Management effects on winderoded sediment and plant nutrients. J. Soil and WaterConservation. 44, 160-163.